Cargando…
A Deep Learning Approach to Organic Pollutants Classification Using Voltammetry
This paper proposes a deep leaning technique for accurate detection and reliable classification of organic pollutants in water. The pollutants are detected by means of cyclic voltammetry characterizations made by using low-cost disposable screen-printed electrodes. The paper demonstrates the possibi...
Autores principales: | Molinara, Mario, Cancelliere, Rocco, Di Tinno, Alessio, Ferrigno, Luigi, Shuba, Mikhail, Kuzhir, Polina, Maffucci, Antonio, Micheli, Laura |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9608622/ https://www.ncbi.nlm.nih.gov/pubmed/36298383 http://dx.doi.org/10.3390/s22208032 |
Ejemplares similares
-
Sensitive Detection of Industrial Pollutants Using Modified Electrochemical Platforms
por: Di Tinno, Alessio, et al.
Publicado: (2022) -
Determination of Folic Acid Using Biosensors—A Short Review of Recent Progress
por: Di Tinno, Alessio, et al.
Publicado: (2021) -
Powerful Electron-Transfer Screen-Printed Platforms as Biosensing Tools: The Case of Uric Acid Biosensor
por: Cancelliere, Rocco, et al.
Publicado: (2021) -
Microfluidic Flow Injection Immunoassay System for Algal Toxins Determination: A Case of Study
por: Celio, Lorenzo, et al.
Publicado: (2021) -
Detection of dairy fouling by cyclic voltammetry and square wave voltammetry
por: Fysun, Olga, et al.
Publicado: (2020)