Cargando…
Brain Age Prediction: A Comparison between Machine Learning Models Using Brain Morphometric Data
Brain structural morphology varies over the aging trajectory, and the prediction of a person’s age using brain morphological features can help the detection of an abnormal aging process. Neuroimaging-based brain age is widely used to quantify an individual’s brain health as deviation from a normativ...
Autores principales: | Han, Juhyuk, Kim, Seo Yeong, Lee, Junhyeok, Lee, Won Hee |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9608785/ https://www.ncbi.nlm.nih.gov/pubmed/36298428 http://dx.doi.org/10.3390/s22208077 |
Ejemplares similares
-
Brain age prediction: A comparison between machine learning models using region‐ and voxel‐based morphometric data
por: Baecker, Lea, et al.
Publicado: (2021) -
Anxious Brains: A Combined Data Fusion Machine Learning Approach to Predict Trait Anxiety from Morphometric Features
por: Baggio, Teresa, et al.
Publicado: (2023) -
Multimodal brain age prediction fusing morphometric and imaging data and association with cardiovascular risk factors
por: Mouches, Pauline, et al.
Publicado: (2022) -
Multiple Machine Learning Approaches for Morphometric Parameters in Prediction of Hydrocephalus
por: Xu, Hao, et al.
Publicado: (2022) -
Using machine learning to predict processes and morphometric features of watershed
por: Mokarram, Marzieh, et al.
Publicado: (2023)