Cargando…
Partial Least Squares Enhances Genomic Prediction of New Environments
In plant breeding, the need to improve the prediction of future seasons or new locations and/or environments, also denoted as “leave one environment out,” is of paramount importance to increase the genetic gain in breeding programs and contribute to food and nutrition security worldwide. Genomic sel...
Autores principales: | Montesinos-López, Osval A., Montesinos-López, Abelardo, Kismiantini, Roman-Gallardo, Armando, Gardner, Keith, Lillemo, Morten, Fritsche-Neto, Roberto, Crossa, José |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9608852/ https://www.ncbi.nlm.nih.gov/pubmed/36313422 http://dx.doi.org/10.3389/fgene.2022.920689 |
Ejemplares similares
-
Multi-trait genome prediction of new environments with partial least squares
por: Montesinos-López, Osval A., et al.
Publicado: (2022) -
Partial least squares enhance multi-trait genomic prediction of potato cultivars in new environments
por: Ortiz, Rodomiro, et al.
Publicado: (2023) -
A New Deep Learning Calibration Method Enhances Genome-Based Prediction of Continuous Crop Traits
por: Montesinos-López, Osval A., et al.
Publicado: (2021) -
Two simple methods to improve the accuracy of the genomic selection methodology
por: Montesinos-López, Osval A., et al.
Publicado: (2023) -
An R Package for Bayesian Analysis of Multi-environment and Multi-trait Multi-environment Data for Genome-Based Prediction
por: Montesinos-López, Osval A., et al.
Publicado: (2019)