Cargando…
Towards Developing a Robust Intrusion Detection Model Using Hadoop–Spark and Data Augmentation for IoT Networks †
In recent years, anomaly detection and machine learning for intrusion detection systems have been used to detect anomalies on Internet of Things networks. These systems rely on machine and deep learning to improve the detection accuracy. However, the robustness of the model depends on the number of...
Autores principales: | Manzano Sanchez, Ricardo Alejandro, Zaman, Marzia, Goel, Nishith, Naik, Kshirasagar, Joshi, Rohit |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9608938/ https://www.ncbi.nlm.nih.gov/pubmed/36298077 http://dx.doi.org/10.3390/s22207726 |
Ejemplares similares
-
Intrusion Detection System for IoT: Analysis of PSD Robustness
por: Sanogo, Lamoussa, et al.
Publicado: (2023) -
The proposed hybrid deep learning intrusion prediction IoT (HDLIP-IoT) framework
por: Fadel, Magdy M., et al.
Publicado: (2022) -
Generating Datasets for Anomaly-Based Intrusion Detection Systems in IoT and Industrial IoT Networks
por: Essop, Ismael, et al.
Publicado: (2021) -
Intrusion Detection in IoT Using Deep Learning
por: Banaamah, Alaa Mohammed, et al.
Publicado: (2022) -
Transfer-Learning-Based Intrusion Detection Framework in IoT Networks
por: Rodríguez, Eva, et al.
Publicado: (2022)