Cargando…
Click-Chemistry-Mediated Synthesis of Silver Nanoparticle-Supported Polymer-Wrapped Carbon Nanotubes: Glucose Sensor and Antibacterial Material
[Image: see text] We report a novel approach for the synthesis of silver nanoparticles (NPs) stabilized on polymer-wrapped carbon nanotubes (Ag@polymer/CNTs) for the non-enzymatic glucose sensing and antibacterial activity applications. Poly(styrene-alt-maleic anhydride) (PSM) was functionalized wit...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9609054/ https://www.ncbi.nlm.nih.gov/pubmed/36312403 http://dx.doi.org/10.1021/acsomega.2c02832 |
Sumario: | [Image: see text] We report a novel approach for the synthesis of silver nanoparticles (NPs) stabilized on polymer-wrapped carbon nanotubes (Ag@polymer/CNTs) for the non-enzymatic glucose sensing and antibacterial activity applications. Poly(styrene-alt-maleic anhydride) (PSM) was functionalized with amino furan to obtain furan-modified poly(styrene-alt-maleic anhydride) (PSMF), which was later grafted onto the surface of CNTs by Diels–Alder “click” reaction to afford a polymer/CNTs hybrid material. The photo-deposition technique was applied to immobilized small-sized (∼10 nm) AgNPs on the surface of the polymer/CNTs hybrid material using visible light irradiation. The resulting material, Ag@polymer/CNTs, showed promising electrocatalytic activity for the non-enzymatic glucose sensing and antibacterial activity in vitro assays toward Escherichia coli, Staphylococcus aureus, and Bacillus cereus bacteria strains. Covalent-bonded polymer layer-bearing carboxylic pendent groups to the CNTs might be playing a pivot role in not only stabilizing AgNPs but also facile electron-transfer reaction, thus demonstrating better activity. |
---|