Cargando…
Evaluating the Strength and Impact of Raw Ingredients of Cement Mortar Incorporating Waste Glass Powder Using Machine Learning and SHapley Additive ExPlanations (SHAP) Methods
This research employed machine learning (ML) and SHapley Additive ExPlanations (SHAP) methods to assess the strength and impact of raw ingredients of cement mortar (CM) incorporated with waste glass powder (WGP). The data required for this study were generated using an experimental approach. Two ML...
Autores principales: | Alkadhim, Hassan Ali, Amin, Muhammad Nasir, Ahmad, Waqas, Khan, Kaffayatullah, Nazar, Sohaib, Faraz, Muhammad Iftikhar, Imran, Muhammad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9609276/ https://www.ncbi.nlm.nih.gov/pubmed/36295407 http://dx.doi.org/10.3390/ma15207344 |
Ejemplares similares
-
New SHapley Additive ExPlanations (SHAP) Approach to Evaluate the Raw Materials Interactions of Steel-Fiber-Reinforced Concrete
por: Anjum, Madiha, et al.
Publicado: (2022) -
Experimental and machine learning approaches to investigate the effect of waste glass powder on the flexural strength of cement mortar
por: Amin, Muhammad Nasir, et al.
Publicado: (2023) -
Exploring kinase family inhibitors and their moiety preferences using deep SHapley additive exPlanations
por: Fan, You-Wei, et al.
Publicado: (2022) -
Use of Artificial Intelligence for Predicting Parameters of Sustainable Concrete and Raw Ingredient Effects and Interactions
por: Amin, Muhammad Nasir, et al.
Publicado: (2022) -
Machine Learning Models Using SHapley Additive exPlanation for Fire Risk Assessment Mode and Effects Analysis of Stadiums
por: Lu, Ying, et al.
Publicado: (2023)