Cargando…
A Hard Voting Policy-Driven Deep Learning Architectural Ensemble Strategy for Industrial Products Defect Recognition and Classification
Manual or traditional industrial product inspection and defect-recognition models have some limitations, including process complexity, time-consuming, error-prone, and expensiveness. These issues negatively impact the quality control processes. Therefore, an efficient, rapid, and intelligent model i...
Autores principales: | Stephen, Okeke, Madanian, Samaneh, Nguyen, Minh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9609453/ https://www.ncbi.nlm.nih.gov/pubmed/36298197 http://dx.doi.org/10.3390/s22207846 |
Ejemplares similares
-
A Robust Deep Learning Ensemble-Driven Model for Defect and Non-Defect Recognition and Classification Using a Weighted Averaging Sequence-Based Meta-Learning Ensembler
por: Stephen, Okeke, et al.
Publicado: (2022) -
A voting-based ensemble feature network for semiconductor wafer defect classification
por: Misra, Sampa, et al.
Publicado: (2022) -
Deep Learning Based COVID-19 Detection via Hard Voting Ensemble Method
por: Shareef, Asaad Qasim, et al.
Publicado: (2023) -
Diagnosing Coronary Artery Disease on the Basis of Hard Ensemble Voting Optimization
por: Mohammedqasim, Hayder, et al.
Publicado: (2022) -
Voting Ensemble Approach for Enhancing Alzheimer’s Disease Classification
por: Chatterjee, Subhajit, et al.
Publicado: (2022)