Cargando…
Metals and Metalloids Increase in Cycas micronesica Seed Gametophyte Tissue in Shaded Growth Conditions
Exposure to environmental toxins may be partly responsible for mammal neurodegenerative disorders. Consumption of seeds from Guam’s cycad tree has been linked to the disorder known as amyotrophic lateral sclerosis-parkinsonism dementia complex (ALS-PDC). The unambiguous identification of causal agen...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9609483/ https://www.ncbi.nlm.nih.gov/pubmed/36287831 http://dx.doi.org/10.3390/toxics10100550 |
Sumario: | Exposure to environmental toxins may be partly responsible for mammal neurodegenerative disorders. Consumption of seeds from Guam’s cycad tree has been linked to the disorder known as amyotrophic lateral sclerosis-parkinsonism dementia complex (ALS-PDC). The unambiguous identification of causal agents of ALS-PDC has been elusive. We have examined the levels of eight metals and metalloids in cycad seeds as a function of the ambient shade in which the plants were grown. Of these metals, the data strongly suggest that aluminum (Al) and selenium (Se) are present in washed flour prepared from southern Guam’s cycad seed tissues at elevated levels, especially when the trees are grown in shade. Previous authors have speculated that Al and Se are involved in various ALS outcomes, and our results support this interpretation. |
---|