Cargando…

Cross-Linked Polyimide/ZIF-8 Mixed-Matrix Membranes by In Situ Formation of ZIF-8: Effect of Cross-Linking on Their Propylene/Propane Separation

Despite their potential for the scalable production of mixed-matrix membranes (MMMs), the MMMs prepared by the polymer-modification-enabled in situ metal–organic framework formation (PMMOF) process showed a considerable reduction in gas permeability as the filler loading increased. It was hypothesiz...

Descripción completa

Detalles Bibliográficos
Autores principales: Park, Sunghwan, Jeong, Hae-Kwon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9609502/
https://www.ncbi.nlm.nih.gov/pubmed/36295723
http://dx.doi.org/10.3390/membranes12100964
Descripción
Sumario:Despite their potential for the scalable production of mixed-matrix membranes (MMMs), the MMMs prepared by the polymer-modification-enabled in situ metal–organic framework formation (PMMOF) process showed a considerable reduction in gas permeability as the filler loading increased. It was hypothesized that a correlation existed between the decrease in permeability and the change in the properties of the polymer, such as free volume and chain flexibility, upon in situ MOF formation. Herein, we aim to address the permeability reduction by using a cross-linked polyimide (6FDA-DAM:DABA (3:2)). It was found the degree of cross-linking affected not only the properties of the polymer, but also the in situ formation of the ZIF-8 filler particles in the cross-linked polymer. The proper degree of cross-linking resulted in suppressing C(3)H(6) permeability reduction, suggesting a possible strategy to overcome the issue of PMMOF. The swelling of the polymer followed by chain rearrangement during the PMMOF, as well as the structural rigidity of the polymer, were found to be critical in mitigating permeability reduction.