Cargando…
Irradiation Damage Independent Deuterium Retention in WMoTaNbV
High entropy alloys are a promising new class of metal alloys with outstanding radiation resistance and thermal stability. The interaction with hydrogen might, however, have desired (H storage) or undesired effects, such as hydrogen-induced embrittlement or tritium retention in the fusion reactor wa...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9609576/ https://www.ncbi.nlm.nih.gov/pubmed/36295361 http://dx.doi.org/10.3390/ma15207296 |
Sumario: | High entropy alloys are a promising new class of metal alloys with outstanding radiation resistance and thermal stability. The interaction with hydrogen might, however, have desired (H storage) or undesired effects, such as hydrogen-induced embrittlement or tritium retention in the fusion reactor wall. High entropy alloy WMoTaNbV and bulk W samples were used to study the quantity of irradiation-induced trapping sites and properties of D retention by employing thermal desorption spectrometry, secondary ion mass spectrometry, and elastic recoil detection analysis. The D implantation was not found to create additional hydrogen traps in WMoTaNbV as it does in W, while 90 at% of implanted D is retained in WMoTaNbV, in contrast to 35 at% in W. Implantation created damage predicted by SRIM is 0.24 dpa in WMoTaNbV, calculated with a density of [Formula: see text] atoms/cm [Formula: see text]. The depth of the maximum damage was 90 nm. An effective trapping energy for D in WMoTaNbV was found to be about 1.7 eV, and the D emission temperature was close to 700 °C. |
---|