Cargando…
An Automatic Defect Detection System for Petrochemical Pipeline Based on Cycle-GAN and YOLO v5
Defect detection of petrochemical pipelines is an important task for industrial production safety. At present, pipeline defect detection mainly relies on closed circuit television method (CCTV) to take video of the pipeline inner wall and then detect the defective area manually, so the detection is...
Autores principales: | Chen, Kun, Li, Hongtao, Li, Chunshu, Zhao, Xinyue, Wu, Shujie, Duan, Yuxiao, Wang, Jinshen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9609589/ https://www.ncbi.nlm.nih.gov/pubmed/36298258 http://dx.doi.org/10.3390/s22207907 |
Ejemplares similares
-
A Novel ST-YOLO Network for Steel-Surface-Defect Detection
por: Ma, Hongtao, et al.
Publicado: (2023) -
WD-YOLO: A More Accurate YOLO for Defect Detection in Weld X-ray Images
por: Pan, Kailai, et al.
Publicado: (2023) -
Inter Pipeline revises cost estimate for Heartland Petrochem Complex
Publicado: (2020) -
EFC-YOLO: An Efficient Surface-Defect-Detection Algorithm for Steel Strips
por: Li, Yanshun, et al.
Publicado: (2023) -
AIE-YOLO: Auxiliary Information Enhanced YOLO for Small Object Detection
por: Yan, Bingnan, et al.
Publicado: (2022)