Cargando…
Low SNR Multi-Emitter Signal Sorting and Recognition Method Based on Low-Order Cyclic Statistics CWD Time-Frequency Images and the YOLOv5 Deep Learning Model
It is difficult for traditional signal-recognition methods to effectively classify and identify multiple emitter signals in a low SNR environment. This paper proposes a multi-emitter signal-feature-sorting and recognition method based on low-order cyclic statistics CWD time-frequency images and the...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9609638/ https://www.ncbi.nlm.nih.gov/pubmed/36298133 http://dx.doi.org/10.3390/s22207783 |
Sumario: | It is difficult for traditional signal-recognition methods to effectively classify and identify multiple emitter signals in a low SNR environment. This paper proposes a multi-emitter signal-feature-sorting and recognition method based on low-order cyclic statistics CWD time-frequency images and the YOLOv5 deep network model, which can quickly dissociate, label, and sort the multi-emitter signal features in the time-frequency domain under a low SNR environment. First, the denoised signal is extracted based on the low-order cyclic statistics of the typical modulation types of radiation source signals. Second, the time-frequency graph of multisource signals was obtained through CWD time-frequency analysis. The cyclic frequency was controlled to balance the noise suppression effect and operation time to achieve noise suppression of multisource signals at a low SNR. Finally, the YOLOv5s deep network model is used as a classifier to sort and identify the received signals from multiple radiation sources. The method proposed in this paper has high real-time performance. It can identify the radiation source signals of different modulation types with high accuracy under the condition of a low SNR. |
---|