Cargando…
Low SNR Multi-Emitter Signal Sorting and Recognition Method Based on Low-Order Cyclic Statistics CWD Time-Frequency Images and the YOLOv5 Deep Learning Model
It is difficult for traditional signal-recognition methods to effectively classify and identify multiple emitter signals in a low SNR environment. This paper proposes a multi-emitter signal-feature-sorting and recognition method based on low-order cyclic statistics CWD time-frequency images and the...
Autores principales: | Huang, Dingkun, Yan, Xiaopeng, Hao, Xinhong, Dai, Jian, Wang, Xinwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9609638/ https://www.ncbi.nlm.nih.gov/pubmed/36298133 http://dx.doi.org/10.3390/s22207783 |
Ejemplares similares
-
Emergence of CWD strains
por: Otero, Alicia, et al.
Publicado: (2022) -
Benchmarking YOLOv5 and YOLOv7 models with DeepSORT for droplet tracking applications
por: Durve, Mihir, et al.
Publicado: (2023) -
CST: Complex Sparse Transformer for Low-SNR Speech Enhancement
por: Tan, Kaijun, et al.
Publicado: (2023) -
Chronic wasting disease (CWD) in cervids
por: Ricci, Antonia, et al.
Publicado: (2017) -
A Novel Speed Compensation Method for ISAR Imaging with Low SNR
por: Liu, Yongxiang, et al.
Publicado: (2015)