Cargando…
Soil Moisture, Organic Carbon, and Nitrogen Content Prediction with Hyperspectral Data Using Regression Models
Soil moisture, soil organic carbon, and nitrogen content prediction are considered significant fields of study as they are directly related to plant health and food production. Direct estimation of these soil properties with traditional methods, for example, the oven-drying technique and chemical an...
Autores principales: | Datta, Dristi, Paul, Manoranjan, Murshed, Manzur, Teng, Shyh Wei, Schmidtke, Leigh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9609775/ https://www.ncbi.nlm.nih.gov/pubmed/36298349 http://dx.doi.org/10.3390/s22207998 |
Ejemplares similares
-
Hyperspectral Analysis of Soil Nitrogen, Carbon, Carbonate, and Organic Matter Using Regression Trees
por: Gmur, Stephan, et al.
Publicado: (2012) -
Grazing and Mowing Affect the Carbon-to-Nitrogen Ratio of Plants by Changing the Soil Available Nitrogen Content and Soil Moisture on the Meadow Steppe, China
por: Wang, Le, et al.
Publicado: (2022) -
Combining UAV-based hyperspectral imagery and machine learning algorithms for soil moisture content monitoring
por: Ge, Xiangyu, et al.
Publicado: (2019) -
Estimating soil moisture content under grassland with hyperspectral data using radiative transfer modelling and machine learning
por: Döpper, Veronika, et al.
Publicado: (2022) -
Rapid determination of pit mud moisture content using hyperspectral imaging
por: Zhu, Min, et al.
Publicado: (2019)