Cargando…
Individualized Short-Term Electric Load Forecasting Using Data-Driven Meta-Heuristic Method Based on LSTM Network
Short-term load forecasting is viewed as one promising technology for demand prediction under the most critical inputs for the promising arrangement of power plant units. Thus, it is imperative to present new incentive methods to motivate such power system operations for electricity management. This...
Autores principales: | Sun, Lichao, Qin, Hang, Przystupa, Krzysztof, Majka, Michal, Kochan, Orest |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9609862/ https://www.ncbi.nlm.nih.gov/pubmed/36298250 http://dx.doi.org/10.3390/s22207900 |
Ejemplares similares
-
Improving the Efficiency of Multistep Short-Term Electricity Load Forecasting via R-CNN with ML-LSTM
por: Alsharekh, Mohammed F., et al.
Publicado: (2022) -
Short-Term Load Forecasting Based on EEMD-WOA-LSTM Combination Model
por: Shao, Lei, et al.
Publicado: (2022) -
Wavelet LSTM for Fault Forecasting in Electrical Power Grids
por: Branco, Nathielle Waldrigues, et al.
Publicado: (2022) -
Multi-horizon short-term load forecasting using hybrid of LSTM and modified split convolution
por: Ullah, Irshad, et al.
Publicado: (2023) -
A deep LSTM network for the Spanish electricity consumption forecasting
por: Torres, J. F., et al.
Publicado: (2022)