Cargando…
The mr-MDA: An Invariant to Shifting, Scaling, and Rotating Variance for 3D Object Recognition Using Diffractive Deep Neural Network
The diffractive deep neural network (D(2)NN) can efficiently accomplish 2D object recognition based on rapid optical manipulation. Moreover, the multiple-view D(2)NN array (MDA) possesses the obvious advantage of being able to effectively achieve 3D object classification. At present, 3D target recog...
Autores principales: | Zhou, Liang, Shi, Jiashuo, Zhang, Xinyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9610052/ https://www.ncbi.nlm.nih.gov/pubmed/36298105 http://dx.doi.org/10.3390/s22207754 |
Ejemplares similares
-
Low-dose shift- and rotation-invariant diffraction recognition imaging
por: Latychevskaia, Tatiana, et al.
Publicado: (2022) -
Neural Representations that Support Invariant Object Recognition
por: Goris, Robbe L. T., et al.
Publicado: (2009) -
Invariance of object detection in untrained deep neural networks
por: Cheon, Jeonghwan, et al.
Publicado: (2022) -
Invariant object recognition based on extended fragments
por: Bart, Evgeniy, et al.
Publicado: (2012) -
Deep Networks Can Resemble Human Feed-forward Vision in Invariant Object Recognition
por: Kheradpisheh, Saeed Reza, et al.
Publicado: (2016)