Cargando…
Combined SBAS-InSAR and PSO-RF Algorithm for Evaluating the Susceptibility Prediction of Landslide in Complex Mountainous Area: A Case Study of Ludian County, China
In complex mountainous areas where earthquakes are frequent, landslide hazards pose a significant threat to human life and property due to their high degree of concealment, complex development mechanism, and abrupt nature. In view of the problems of the existing landslide hazard susceptibility evalu...
Autores principales: | Xiao, Bo, Zhao, Junsan, Li, Dongsheng, Zhao, Zhenfeng, Zhou, Dingyi, Xi, Wenfei, Li, Yangyang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9610394/ https://www.ncbi.nlm.nih.gov/pubmed/36298394 http://dx.doi.org/10.3390/s22208041 |
Ejemplares similares
-
Identification of Landslides in Mountainous Area with the Combination of SBAS-InSAR and Yolo Model
por: Guo, Haojia, et al.
Publicado: (2022) -
Landslide Susceptibility Mapping of Karakorum Highway Combined with the Application of SBAS-InSAR Technology
por: Zhao, Fumeng, et al.
Publicado: (2019) -
Landslide Susceptibility Mapping with Integrated SBAS-InSAR Technique: A Case Study of Dongchuan District, Yunnan (China)
por: Zhu, Zhifu, et al.
Publicado: (2022) -
SBAS-InSAR based validated landslide susceptibility mapping along the Karakoram Highway: a case study of Gilgit-Baltistan, Pakistan
por: Kulsoom, Isma, et al.
Publicado: (2023) -
Monitoring and analysis of ground subsidence in Shanghai based on PS-InSAR and SBAS-InSAR technologies
por: Zhang, Zhihua, et al.
Publicado: (2023)