Cargando…
Recent Development of Heat and Mass Transport in the Presence of Hall, Ion Slip and Thermo Diffusion in Radiative Second Grade Material: Application of Micromachines
This article describes the incompressible two-dimensional heat and mass transfer of an electrically conducting second-grade fluid flow in a porous medium with Hall and ion slip effects, diffusion thermal effects, and radiation absorption effects. It is assumed that the fluid is a gray, absorbing–emi...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9610405/ https://www.ncbi.nlm.nih.gov/pubmed/36295918 http://dx.doi.org/10.3390/mi13101566 |
_version_ | 1784819261637656576 |
---|---|
author | Deepthi, V. V. L. Lashin, Maha M. A. Ravi Kumar, N. Raghunath, Kodi Ali, Farhan Oreijah, Mowffaq Guedri, Kamel Tag-ElDin, El Sayed Mohamed Khan, M. Ijaz Galal, Ahmed M. |
author_facet | Deepthi, V. V. L. Lashin, Maha M. A. Ravi Kumar, N. Raghunath, Kodi Ali, Farhan Oreijah, Mowffaq Guedri, Kamel Tag-ElDin, El Sayed Mohamed Khan, M. Ijaz Galal, Ahmed M. |
author_sort | Deepthi, V. V. L. |
collection | PubMed |
description | This article describes the incompressible two-dimensional heat and mass transfer of an electrically conducting second-grade fluid flow in a porous medium with Hall and ion slip effects, diffusion thermal effects, and radiation absorption effects. It is assumed that the fluid is a gray, absorbing–emitting but non-scattering medium and the Rosseland approximation is used to describe the radiative heat flux in the energy equation. It is assumed that the liquid is opaque and absorbs and emits radiation in a manner that does not result in scattering. It is considered an unsteady laminar MHD convective rotating flow of heat-producing or absorbing second-grade fluid across a semi-infinite vertical moving permeable surface. The profiles of velocity components, temperature distribution, and concentration are studied to apply the regular perturbation technique. These profiles are shown as graphs for various fluid and geometric parameters such as Hall and ion slip parameters, radiation absorption, diffusion thermo, Prandtl number, Schmidt number, and chemical reaction rate. On the other hand, the skin friction coefficient and the Nusselt number are determined by numerical evaluation and provided in tables. These tables are then analysed and debated for various values of the flow parameters that regulate it. It may be deduced that an increase in the parameters of radiation absorption, Hall, and ion slip over the fluid region increases the velocity produced. The resulting momentum continually grows to a very high level, with contributions from the thermal and solutal buoyancy forces. The temperature distribution may be more concentrated by raising both the heat source parameter and the quantity of radiation. When one of the parameters for the chemical reaction is increased, the whole fluid area will experience a fall in concentration. Skin friction may be decreased by manipulating the rotation parameter, but the Hall effect and ion slip effect can worsen it. When the parameter for the chemical reaction increases, there is a concomitant rise in the mass transfer rate. |
format | Online Article Text |
id | pubmed-9610405 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96104052022-10-28 Recent Development of Heat and Mass Transport in the Presence of Hall, Ion Slip and Thermo Diffusion in Radiative Second Grade Material: Application of Micromachines Deepthi, V. V. L. Lashin, Maha M. A. Ravi Kumar, N. Raghunath, Kodi Ali, Farhan Oreijah, Mowffaq Guedri, Kamel Tag-ElDin, El Sayed Mohamed Khan, M. Ijaz Galal, Ahmed M. Micromachines (Basel) Article This article describes the incompressible two-dimensional heat and mass transfer of an electrically conducting second-grade fluid flow in a porous medium with Hall and ion slip effects, diffusion thermal effects, and radiation absorption effects. It is assumed that the fluid is a gray, absorbing–emitting but non-scattering medium and the Rosseland approximation is used to describe the radiative heat flux in the energy equation. It is assumed that the liquid is opaque and absorbs and emits radiation in a manner that does not result in scattering. It is considered an unsteady laminar MHD convective rotating flow of heat-producing or absorbing second-grade fluid across a semi-infinite vertical moving permeable surface. The profiles of velocity components, temperature distribution, and concentration are studied to apply the regular perturbation technique. These profiles are shown as graphs for various fluid and geometric parameters such as Hall and ion slip parameters, radiation absorption, diffusion thermo, Prandtl number, Schmidt number, and chemical reaction rate. On the other hand, the skin friction coefficient and the Nusselt number are determined by numerical evaluation and provided in tables. These tables are then analysed and debated for various values of the flow parameters that regulate it. It may be deduced that an increase in the parameters of radiation absorption, Hall, and ion slip over the fluid region increases the velocity produced. The resulting momentum continually grows to a very high level, with contributions from the thermal and solutal buoyancy forces. The temperature distribution may be more concentrated by raising both the heat source parameter and the quantity of radiation. When one of the parameters for the chemical reaction is increased, the whole fluid area will experience a fall in concentration. Skin friction may be decreased by manipulating the rotation parameter, but the Hall effect and ion slip effect can worsen it. When the parameter for the chemical reaction increases, there is a concomitant rise in the mass transfer rate. MDPI 2022-09-21 /pmc/articles/PMC9610405/ /pubmed/36295918 http://dx.doi.org/10.3390/mi13101566 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Deepthi, V. V. L. Lashin, Maha M. A. Ravi Kumar, N. Raghunath, Kodi Ali, Farhan Oreijah, Mowffaq Guedri, Kamel Tag-ElDin, El Sayed Mohamed Khan, M. Ijaz Galal, Ahmed M. Recent Development of Heat and Mass Transport in the Presence of Hall, Ion Slip and Thermo Diffusion in Radiative Second Grade Material: Application of Micromachines |
title | Recent Development of Heat and Mass Transport in the Presence of Hall, Ion Slip and Thermo Diffusion in Radiative Second Grade Material: Application of Micromachines |
title_full | Recent Development of Heat and Mass Transport in the Presence of Hall, Ion Slip and Thermo Diffusion in Radiative Second Grade Material: Application of Micromachines |
title_fullStr | Recent Development of Heat and Mass Transport in the Presence of Hall, Ion Slip and Thermo Diffusion in Radiative Second Grade Material: Application of Micromachines |
title_full_unstemmed | Recent Development of Heat and Mass Transport in the Presence of Hall, Ion Slip and Thermo Diffusion in Radiative Second Grade Material: Application of Micromachines |
title_short | Recent Development of Heat and Mass Transport in the Presence of Hall, Ion Slip and Thermo Diffusion in Radiative Second Grade Material: Application of Micromachines |
title_sort | recent development of heat and mass transport in the presence of hall, ion slip and thermo diffusion in radiative second grade material: application of micromachines |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9610405/ https://www.ncbi.nlm.nih.gov/pubmed/36295918 http://dx.doi.org/10.3390/mi13101566 |
work_keys_str_mv | AT deepthivvl recentdevelopmentofheatandmasstransportinthepresenceofhallionslipandthermodiffusioninradiativesecondgradematerialapplicationofmicromachines AT lashinmahama recentdevelopmentofheatandmasstransportinthepresenceofhallionslipandthermodiffusioninradiativesecondgradematerialapplicationofmicromachines AT ravikumarn recentdevelopmentofheatandmasstransportinthepresenceofhallionslipandthermodiffusioninradiativesecondgradematerialapplicationofmicromachines AT raghunathkodi recentdevelopmentofheatandmasstransportinthepresenceofhallionslipandthermodiffusioninradiativesecondgradematerialapplicationofmicromachines AT alifarhan recentdevelopmentofheatandmasstransportinthepresenceofhallionslipandthermodiffusioninradiativesecondgradematerialapplicationofmicromachines AT oreijahmowffaq recentdevelopmentofheatandmasstransportinthepresenceofhallionslipandthermodiffusioninradiativesecondgradematerialapplicationofmicromachines AT guedrikamel recentdevelopmentofheatandmasstransportinthepresenceofhallionslipandthermodiffusioninradiativesecondgradematerialapplicationofmicromachines AT tageldinelsayedmohamed recentdevelopmentofheatandmasstransportinthepresenceofhallionslipandthermodiffusioninradiativesecondgradematerialapplicationofmicromachines AT khanmijaz recentdevelopmentofheatandmasstransportinthepresenceofhallionslipandthermodiffusioninradiativesecondgradematerialapplicationofmicromachines AT galalahmedm recentdevelopmentofheatandmasstransportinthepresenceofhallionslipandthermodiffusioninradiativesecondgradematerialapplicationofmicromachines |