Cargando…
Inversion of Soil Organic Matter Content Based on Improved Convolutional Neural Network
Soil organic matter (SOM) is an important source of nutrients required during crop growth and is an important component of cultivated soil. In this paper, we studied the possibility of using deep learning methods to establish a multi-feature model to predict SOM content. Moreover, using Nong’an Coun...
Autores principales: | Ma, Li, Zhao, Lei, Cao, Liying, Li, Dongming, Chen, Guifen, Han, Ye |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9610480/ https://www.ncbi.nlm.nih.gov/pubmed/36298127 http://dx.doi.org/10.3390/s22207777 |
Ejemplares similares
-
Hyperspectral Inversion of Soil Organic Matter Content Based on a Combined Spectral Index Model
por: Wei, Lifei, et al.
Publicado: (2020) -
Multi-resolution convolutional neural networks for inverse problems
por: Wang, Feng, et al.
Publicado: (2020) -
The Face Inversion Effect in Deep Convolutional Neural Networks
por: Tian, Fang, et al.
Publicado: (2022) -
Research on improved convolutional wavelet neural network
por: Liu, Jingwei, et al.
Publicado: (2021) -
Transfer Learning for Soil Spectroscopy Based on Convolutional Neural Networks and Its Application in Soil Clay Content Mapping Using Hyperspectral Imagery
por: Liu, Lanfa, et al.
Publicado: (2018)