Cargando…
A Deep Residual Neural Network for Image Reconstruction in Biomedical 3D Magnetic Induction Tomography
In recent years, it has become increasingly popular to solve inverse problems of various tomography methods with deep learning techniques. Here, a deep residual neural network (ResNet) is introduced to reconstruct the conductivity distribution of a biomedical, voluminous body in magnetic induction t...
Autores principales: | Hofmann, Anna, Klein, Martin, Rueter, Dirk, Sauer, Andreas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9610508/ https://www.ncbi.nlm.nih.gov/pubmed/36298274 http://dx.doi.org/10.3390/s22207925 |
Ejemplares similares
-
Three-dimensional Magnetic Induction Tomography: Improved Performance for the Center Regions inside a Low Conductive and Voluminous Body
por: Klein, Martin, et al.
Publicado: (2020) -
Three-Dimensional Magnetic Induction Tomography: Practical Implementation for Imaging throughout the Depth of a Low Conductive and Voluminous Body
por: Klein, Martin, et al.
Publicado: (2021) -
Magnetic Induction Tomography: Separation of the Ill-Posed and Non-Linear Inverse Problem into a Series of Isolated and Less Demanding Subproblems
por: Schledewitz, Tatiana, et al.
Publicado: (2023) -
Application of a Generative Adversarial Network in Image Reconstruction of Magnetic Induction Tomography
por: Yang, Dan, et al.
Publicado: (2021) -
Classification and Reconstruction of Biomedical Signals Based on Convolutional Neural Network
por: Zhu, Zijiang, et al.
Publicado: (2022)