Cargando…
Nanohydrodynamic Local Compaction and Nanoplasmonic Form-Birefringence Inscription by Ultrashort Laser Pulses in Nanoporous Fused Silica
The inscription regimes and formation mechanisms of form-birefringent microstructures inside nano-porous fused silica by tightly focused 1030- and 515-nm ultrashort laser pulses of variable energy levels and pulsewidths in the sub-filamentary regime were explored. Energy-dispersion X-ray micro-spect...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9610725/ https://www.ncbi.nlm.nih.gov/pubmed/36296803 http://dx.doi.org/10.3390/nano12203613 |
Sumario: | The inscription regimes and formation mechanisms of form-birefringent microstructures inside nano-porous fused silica by tightly focused 1030- and 515-nm ultrashort laser pulses of variable energy levels and pulsewidths in the sub-filamentary regime were explored. Energy-dispersion X-ray micro-spectroscopy and 3D scanning confocal Raman micro-spectroscopy revealed the micro-tracks compacted by the multi-shot laser exposure with the nanopores hydrodynamically driven on a microscale to their periphery. Nearly homogeneous polarimetrically acquired subwavelength-scale form-birefringence (refractive index modulation ~10(−3)) was simultaneously produced as birefringent nanogratings inside the microtracks of wavelength-, energy- and pulsewidth-dependent lengths, enabling the scaling of their total retardance for perspective phase-modulation nanophotonic applications. The observed form-birefringence was related to the hierarchical multi-scale structure of the microtracks, envisioned by cross-sectional atomic-force microscopy and numerical modeling. |
---|