Cargando…

Laser-Induced Forward Transferred Optical Scattering Nanosilica for Transparent Displays

Laser printing has become a promising alternative for large-scale fabrication of functional devices. Here, laser-induced forward transfer (LIFT) of nanosilica was successfully achieved using a lower-cost nanosecond laser with a center wavelength of 1064 nm. To enhance the light absorption of silica,...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Ruo-Zhou, Yang, Mingqing, Guo, Lvjiu, Qu, Ke, Jian, Tong, Yu, Ying, Yan, Jing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9610747/
https://www.ncbi.nlm.nih.gov/pubmed/36296864
http://dx.doi.org/10.3390/nano12203674
Descripción
Sumario:Laser printing has become a promising alternative for large-scale fabrication of functional devices. Here, laser-induced forward transfer (LIFT) of nanosilica was successfully achieved using a lower-cost nanosecond laser with a center wavelength of 1064 nm. To enhance the light absorption of silica, a small amount of graphene oxide (GO) was added to the fumed silica. Investigations were conducted to give an insight into the role of GO in the LIFT process. Pattern deposition was achieved with a minimum line width of 221 μm. The scattering can be tuned from ~2.5% to ~17.5% by changing the laser fluence. The patternable transparent display based on laser transferred nanosilica (LTNS) film was also demonstrated, showing its capability to deliver information on multiple levels. This LIFT based technique promotes fast, flexible, and low-cost manufacturing of scattering-based translucent screens or patterns for transparent displays.