Cargando…

The Complexity of Comparative Adsorption of C(6) Hydrocarbons (Benzene, Cyclohexane, n-Hexane) at Metal–Organic Frameworks

The relatively stable MOFs Alfum, MIL-160, DUT-4, DUT-5, MIL-53-TDC, MIL-53, UiO-66, UiO-66-NH(2), UiO-66(F)(4), UiO-67, DUT-67, NH(2)-MIL-125, MIL-125, MIL-101(Cr), ZIF-8, ZIF-11 and ZIF-7 were studied for their C(6) sorption properties. An understanding of the uptake of the larger C(6) molecules c...

Descripción completa

Detalles Bibliográficos
Autores principales: Jansen, Christian, Assahub, Nabil, Spieß, Alex, Liang, Jun, Schmitz, Alexa, Xing, Shanghua, Gökpinar, Serkan, Janiak, Christoph
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9610754/
https://www.ncbi.nlm.nih.gov/pubmed/36296804
http://dx.doi.org/10.3390/nano12203614
_version_ 1784819355081506816
author Jansen, Christian
Assahub, Nabil
Spieß, Alex
Liang, Jun
Schmitz, Alexa
Xing, Shanghua
Gökpinar, Serkan
Janiak, Christoph
author_facet Jansen, Christian
Assahub, Nabil
Spieß, Alex
Liang, Jun
Schmitz, Alexa
Xing, Shanghua
Gökpinar, Serkan
Janiak, Christoph
author_sort Jansen, Christian
collection PubMed
description The relatively stable MOFs Alfum, MIL-160, DUT-4, DUT-5, MIL-53-TDC, MIL-53, UiO-66, UiO-66-NH(2), UiO-66(F)(4), UiO-67, DUT-67, NH(2)-MIL-125, MIL-125, MIL-101(Cr), ZIF-8, ZIF-11 and ZIF-7 were studied for their C(6) sorption properties. An understanding of the uptake of the larger C(6) molecules cannot simply be achieved with surface area and pore volume (from N(2) sorption) but involves the complex micropore structure of the MOF. The maximum adsorption capacity at p p(0)(−1) = 0.9 was shown by DUT-4 for benzene, MIL-101(Cr) for cyclohexane and DUT-5 for n-hexane. In the low-pressure range from p p(0)(−1) = 0.1 down to 0.05 the highest benzene uptake is given by DUT-5, DUT-67/UiO-67 and MIL-101(Cr), for cyclohexane and n-hexane by DUT-5, UiO-67 and MIL-101(Cr). The highest uptake capacity at p p(0)(−1) = 0.02 was seen with MIL-53 for benzene, MIL-125 for cyclohexane and DUT-5 for n-hexane. DUT-5 and MIL-101(Cr) are the MOFs with the widest pore window openings/cross sections but the low-pressure uptake seems to be controlled by a complex combination of ligand and pore-size effect. IAST selectivities between the three binary mixtures show a finely tuned and difficult to predict interplay of pore window size with (critical) adsorptive size and possibly a role of electrostatics through functional groups such as NH(2).
format Online
Article
Text
id pubmed-9610754
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-96107542022-10-28 The Complexity of Comparative Adsorption of C(6) Hydrocarbons (Benzene, Cyclohexane, n-Hexane) at Metal–Organic Frameworks Jansen, Christian Assahub, Nabil Spieß, Alex Liang, Jun Schmitz, Alexa Xing, Shanghua Gökpinar, Serkan Janiak, Christoph Nanomaterials (Basel) Article The relatively stable MOFs Alfum, MIL-160, DUT-4, DUT-5, MIL-53-TDC, MIL-53, UiO-66, UiO-66-NH(2), UiO-66(F)(4), UiO-67, DUT-67, NH(2)-MIL-125, MIL-125, MIL-101(Cr), ZIF-8, ZIF-11 and ZIF-7 were studied for their C(6) sorption properties. An understanding of the uptake of the larger C(6) molecules cannot simply be achieved with surface area and pore volume (from N(2) sorption) but involves the complex micropore structure of the MOF. The maximum adsorption capacity at p p(0)(−1) = 0.9 was shown by DUT-4 for benzene, MIL-101(Cr) for cyclohexane and DUT-5 for n-hexane. In the low-pressure range from p p(0)(−1) = 0.1 down to 0.05 the highest benzene uptake is given by DUT-5, DUT-67/UiO-67 and MIL-101(Cr), for cyclohexane and n-hexane by DUT-5, UiO-67 and MIL-101(Cr). The highest uptake capacity at p p(0)(−1) = 0.02 was seen with MIL-53 for benzene, MIL-125 for cyclohexane and DUT-5 for n-hexane. DUT-5 and MIL-101(Cr) are the MOFs with the widest pore window openings/cross sections but the low-pressure uptake seems to be controlled by a complex combination of ligand and pore-size effect. IAST selectivities between the three binary mixtures show a finely tuned and difficult to predict interplay of pore window size with (critical) adsorptive size and possibly a role of electrostatics through functional groups such as NH(2). MDPI 2022-10-15 /pmc/articles/PMC9610754/ /pubmed/36296804 http://dx.doi.org/10.3390/nano12203614 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Jansen, Christian
Assahub, Nabil
Spieß, Alex
Liang, Jun
Schmitz, Alexa
Xing, Shanghua
Gökpinar, Serkan
Janiak, Christoph
The Complexity of Comparative Adsorption of C(6) Hydrocarbons (Benzene, Cyclohexane, n-Hexane) at Metal–Organic Frameworks
title The Complexity of Comparative Adsorption of C(6) Hydrocarbons (Benzene, Cyclohexane, n-Hexane) at Metal–Organic Frameworks
title_full The Complexity of Comparative Adsorption of C(6) Hydrocarbons (Benzene, Cyclohexane, n-Hexane) at Metal–Organic Frameworks
title_fullStr The Complexity of Comparative Adsorption of C(6) Hydrocarbons (Benzene, Cyclohexane, n-Hexane) at Metal–Organic Frameworks
title_full_unstemmed The Complexity of Comparative Adsorption of C(6) Hydrocarbons (Benzene, Cyclohexane, n-Hexane) at Metal–Organic Frameworks
title_short The Complexity of Comparative Adsorption of C(6) Hydrocarbons (Benzene, Cyclohexane, n-Hexane) at Metal–Organic Frameworks
title_sort complexity of comparative adsorption of c(6) hydrocarbons (benzene, cyclohexane, n-hexane) at metal–organic frameworks
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9610754/
https://www.ncbi.nlm.nih.gov/pubmed/36296804
http://dx.doi.org/10.3390/nano12203614
work_keys_str_mv AT jansenchristian thecomplexityofcomparativeadsorptionofc6hydrocarbonsbenzenecyclohexanenhexaneatmetalorganicframeworks
AT assahubnabil thecomplexityofcomparativeadsorptionofc6hydrocarbonsbenzenecyclohexanenhexaneatmetalorganicframeworks
AT spießalex thecomplexityofcomparativeadsorptionofc6hydrocarbonsbenzenecyclohexanenhexaneatmetalorganicframeworks
AT liangjun thecomplexityofcomparativeadsorptionofc6hydrocarbonsbenzenecyclohexanenhexaneatmetalorganicframeworks
AT schmitzalexa thecomplexityofcomparativeadsorptionofc6hydrocarbonsbenzenecyclohexanenhexaneatmetalorganicframeworks
AT xingshanghua thecomplexityofcomparativeadsorptionofc6hydrocarbonsbenzenecyclohexanenhexaneatmetalorganicframeworks
AT gokpinarserkan thecomplexityofcomparativeadsorptionofc6hydrocarbonsbenzenecyclohexanenhexaneatmetalorganicframeworks
AT janiakchristoph thecomplexityofcomparativeadsorptionofc6hydrocarbonsbenzenecyclohexanenhexaneatmetalorganicframeworks
AT jansenchristian complexityofcomparativeadsorptionofc6hydrocarbonsbenzenecyclohexanenhexaneatmetalorganicframeworks
AT assahubnabil complexityofcomparativeadsorptionofc6hydrocarbonsbenzenecyclohexanenhexaneatmetalorganicframeworks
AT spießalex complexityofcomparativeadsorptionofc6hydrocarbonsbenzenecyclohexanenhexaneatmetalorganicframeworks
AT liangjun complexityofcomparativeadsorptionofc6hydrocarbonsbenzenecyclohexanenhexaneatmetalorganicframeworks
AT schmitzalexa complexityofcomparativeadsorptionofc6hydrocarbonsbenzenecyclohexanenhexaneatmetalorganicframeworks
AT xingshanghua complexityofcomparativeadsorptionofc6hydrocarbonsbenzenecyclohexanenhexaneatmetalorganicframeworks
AT gokpinarserkan complexityofcomparativeadsorptionofc6hydrocarbonsbenzenecyclohexanenhexaneatmetalorganicframeworks
AT janiakchristoph complexityofcomparativeadsorptionofc6hydrocarbonsbenzenecyclohexanenhexaneatmetalorganicframeworks