Cargando…
The Complexity of Comparative Adsorption of C(6) Hydrocarbons (Benzene, Cyclohexane, n-Hexane) at Metal–Organic Frameworks
The relatively stable MOFs Alfum, MIL-160, DUT-4, DUT-5, MIL-53-TDC, MIL-53, UiO-66, UiO-66-NH(2), UiO-66(F)(4), UiO-67, DUT-67, NH(2)-MIL-125, MIL-125, MIL-101(Cr), ZIF-8, ZIF-11 and ZIF-7 were studied for their C(6) sorption properties. An understanding of the uptake of the larger C(6) molecules c...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9610754/ https://www.ncbi.nlm.nih.gov/pubmed/36296804 http://dx.doi.org/10.3390/nano12203614 |
_version_ | 1784819355081506816 |
---|---|
author | Jansen, Christian Assahub, Nabil Spieß, Alex Liang, Jun Schmitz, Alexa Xing, Shanghua Gökpinar, Serkan Janiak, Christoph |
author_facet | Jansen, Christian Assahub, Nabil Spieß, Alex Liang, Jun Schmitz, Alexa Xing, Shanghua Gökpinar, Serkan Janiak, Christoph |
author_sort | Jansen, Christian |
collection | PubMed |
description | The relatively stable MOFs Alfum, MIL-160, DUT-4, DUT-5, MIL-53-TDC, MIL-53, UiO-66, UiO-66-NH(2), UiO-66(F)(4), UiO-67, DUT-67, NH(2)-MIL-125, MIL-125, MIL-101(Cr), ZIF-8, ZIF-11 and ZIF-7 were studied for their C(6) sorption properties. An understanding of the uptake of the larger C(6) molecules cannot simply be achieved with surface area and pore volume (from N(2) sorption) but involves the complex micropore structure of the MOF. The maximum adsorption capacity at p p(0)(−1) = 0.9 was shown by DUT-4 for benzene, MIL-101(Cr) for cyclohexane and DUT-5 for n-hexane. In the low-pressure range from p p(0)(−1) = 0.1 down to 0.05 the highest benzene uptake is given by DUT-5, DUT-67/UiO-67 and MIL-101(Cr), for cyclohexane and n-hexane by DUT-5, UiO-67 and MIL-101(Cr). The highest uptake capacity at p p(0)(−1) = 0.02 was seen with MIL-53 for benzene, MIL-125 for cyclohexane and DUT-5 for n-hexane. DUT-5 and MIL-101(Cr) are the MOFs with the widest pore window openings/cross sections but the low-pressure uptake seems to be controlled by a complex combination of ligand and pore-size effect. IAST selectivities between the three binary mixtures show a finely tuned and difficult to predict interplay of pore window size with (critical) adsorptive size and possibly a role of electrostatics through functional groups such as NH(2). |
format | Online Article Text |
id | pubmed-9610754 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96107542022-10-28 The Complexity of Comparative Adsorption of C(6) Hydrocarbons (Benzene, Cyclohexane, n-Hexane) at Metal–Organic Frameworks Jansen, Christian Assahub, Nabil Spieß, Alex Liang, Jun Schmitz, Alexa Xing, Shanghua Gökpinar, Serkan Janiak, Christoph Nanomaterials (Basel) Article The relatively stable MOFs Alfum, MIL-160, DUT-4, DUT-5, MIL-53-TDC, MIL-53, UiO-66, UiO-66-NH(2), UiO-66(F)(4), UiO-67, DUT-67, NH(2)-MIL-125, MIL-125, MIL-101(Cr), ZIF-8, ZIF-11 and ZIF-7 were studied for their C(6) sorption properties. An understanding of the uptake of the larger C(6) molecules cannot simply be achieved with surface area and pore volume (from N(2) sorption) but involves the complex micropore structure of the MOF. The maximum adsorption capacity at p p(0)(−1) = 0.9 was shown by DUT-4 for benzene, MIL-101(Cr) for cyclohexane and DUT-5 for n-hexane. In the low-pressure range from p p(0)(−1) = 0.1 down to 0.05 the highest benzene uptake is given by DUT-5, DUT-67/UiO-67 and MIL-101(Cr), for cyclohexane and n-hexane by DUT-5, UiO-67 and MIL-101(Cr). The highest uptake capacity at p p(0)(−1) = 0.02 was seen with MIL-53 for benzene, MIL-125 for cyclohexane and DUT-5 for n-hexane. DUT-5 and MIL-101(Cr) are the MOFs with the widest pore window openings/cross sections but the low-pressure uptake seems to be controlled by a complex combination of ligand and pore-size effect. IAST selectivities between the three binary mixtures show a finely tuned and difficult to predict interplay of pore window size with (critical) adsorptive size and possibly a role of electrostatics through functional groups such as NH(2). MDPI 2022-10-15 /pmc/articles/PMC9610754/ /pubmed/36296804 http://dx.doi.org/10.3390/nano12203614 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Jansen, Christian Assahub, Nabil Spieß, Alex Liang, Jun Schmitz, Alexa Xing, Shanghua Gökpinar, Serkan Janiak, Christoph The Complexity of Comparative Adsorption of C(6) Hydrocarbons (Benzene, Cyclohexane, n-Hexane) at Metal–Organic Frameworks |
title | The Complexity of Comparative Adsorption of C(6) Hydrocarbons (Benzene, Cyclohexane, n-Hexane) at Metal–Organic Frameworks |
title_full | The Complexity of Comparative Adsorption of C(6) Hydrocarbons (Benzene, Cyclohexane, n-Hexane) at Metal–Organic Frameworks |
title_fullStr | The Complexity of Comparative Adsorption of C(6) Hydrocarbons (Benzene, Cyclohexane, n-Hexane) at Metal–Organic Frameworks |
title_full_unstemmed | The Complexity of Comparative Adsorption of C(6) Hydrocarbons (Benzene, Cyclohexane, n-Hexane) at Metal–Organic Frameworks |
title_short | The Complexity of Comparative Adsorption of C(6) Hydrocarbons (Benzene, Cyclohexane, n-Hexane) at Metal–Organic Frameworks |
title_sort | complexity of comparative adsorption of c(6) hydrocarbons (benzene, cyclohexane, n-hexane) at metal–organic frameworks |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9610754/ https://www.ncbi.nlm.nih.gov/pubmed/36296804 http://dx.doi.org/10.3390/nano12203614 |
work_keys_str_mv | AT jansenchristian thecomplexityofcomparativeadsorptionofc6hydrocarbonsbenzenecyclohexanenhexaneatmetalorganicframeworks AT assahubnabil thecomplexityofcomparativeadsorptionofc6hydrocarbonsbenzenecyclohexanenhexaneatmetalorganicframeworks AT spießalex thecomplexityofcomparativeadsorptionofc6hydrocarbonsbenzenecyclohexanenhexaneatmetalorganicframeworks AT liangjun thecomplexityofcomparativeadsorptionofc6hydrocarbonsbenzenecyclohexanenhexaneatmetalorganicframeworks AT schmitzalexa thecomplexityofcomparativeadsorptionofc6hydrocarbonsbenzenecyclohexanenhexaneatmetalorganicframeworks AT xingshanghua thecomplexityofcomparativeadsorptionofc6hydrocarbonsbenzenecyclohexanenhexaneatmetalorganicframeworks AT gokpinarserkan thecomplexityofcomparativeadsorptionofc6hydrocarbonsbenzenecyclohexanenhexaneatmetalorganicframeworks AT janiakchristoph thecomplexityofcomparativeadsorptionofc6hydrocarbonsbenzenecyclohexanenhexaneatmetalorganicframeworks AT jansenchristian complexityofcomparativeadsorptionofc6hydrocarbonsbenzenecyclohexanenhexaneatmetalorganicframeworks AT assahubnabil complexityofcomparativeadsorptionofc6hydrocarbonsbenzenecyclohexanenhexaneatmetalorganicframeworks AT spießalex complexityofcomparativeadsorptionofc6hydrocarbonsbenzenecyclohexanenhexaneatmetalorganicframeworks AT liangjun complexityofcomparativeadsorptionofc6hydrocarbonsbenzenecyclohexanenhexaneatmetalorganicframeworks AT schmitzalexa complexityofcomparativeadsorptionofc6hydrocarbonsbenzenecyclohexanenhexaneatmetalorganicframeworks AT xingshanghua complexityofcomparativeadsorptionofc6hydrocarbonsbenzenecyclohexanenhexaneatmetalorganicframeworks AT gokpinarserkan complexityofcomparativeadsorptionofc6hydrocarbonsbenzenecyclohexanenhexaneatmetalorganicframeworks AT janiakchristoph complexityofcomparativeadsorptionofc6hydrocarbonsbenzenecyclohexanenhexaneatmetalorganicframeworks |