Cargando…
Epithelial Biological Response to Machined Titanium vs. PVD Zirconium-Coated Titanium: An In Vitro Study
The aim of this study was to compare the epithelial biological response to machined titanium Ti-6Al-4V grade 5 and titanium Ti-6Al-4V grade 5 coated with zirconia (ZrN) by physical vapor deposition (PVD). Human keratinocytes were cultured in six-well plates. Machined titanium TiAl4V4 grade 5 (T1) an...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9610795/ https://www.ncbi.nlm.nih.gov/pubmed/36295315 http://dx.doi.org/10.3390/ma15207250 |
Sumario: | The aim of this study was to compare the epithelial biological response to machined titanium Ti-6Al-4V grade 5 and titanium Ti-6Al-4V grade 5 coated with zirconia (ZrN) by physical vapor deposition (PVD). Human keratinocytes were cultured in six-well plates. Machined titanium TiAl4V4 grade 5 (T1) and ZrN-coated titanium TiAl4V4 grade 5 (T2) discs were placed in two different wells. The remaining two wells served as control (C). Scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS) were performed to compare the T1 and T2 surfaces. Subsequent analyses were performed to explore the effect of T1 and T2 contact with human keratinocyte HUKE cell lines. Cell viability was evaluated using a trypan blue exclusion test and MTT assay. Cell lysates from C, T1, and T2 were Western blotted to evaluate E-cadherin and Integrin-α6β4 expression. SEM revealed that T2 was smoother and more homogeneous than T1. EDS showed homogeneous and uniform distribution of ZrN coating on T2. Cell viability analyses did not show significant differences between T1 and T2. Furthermore, E-cadherin and Integrin-α6β4 expressions of the epithelial cells cultured in T1 and T2 were similar. Therefore, titanium Ti-6Al-4V grade 5 surfaces coated with ZrN by PVD seem to be similar substrates to the uncoated surfaces for keratinocyte adhesion and proliferation. |
---|