Cargando…

The Synthesis, Antimicrobial Activity, and Molecular Docking of New 1, 2, 4-Triazole, 1, 2, 4-Triazepine, Quinoline, and Pyrimidine Scaffolds Condensed to Naturally Occurring Furochromones

This study aims to synthesize a new series of furochromone derivatives, evaluate their antimicrobial properties, and improve the permeability of potent compounds to inhibit different types of bacteria and fungi. Hence, Substituted furo[3,2-g]chromene-6-carbonitrile (3a,b) readily form 7-amino-5-meth...

Descripción completa

Detalles Bibliográficos
Autores principales: Abu-Hashem, Ameen Ali, Al-Hussain, Sami A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9611066/
https://www.ncbi.nlm.nih.gov/pubmed/36297343
http://dx.doi.org/10.3390/ph15101232
_version_ 1784819434587684864
author Abu-Hashem, Ameen Ali
Al-Hussain, Sami A.
author_facet Abu-Hashem, Ameen Ali
Al-Hussain, Sami A.
author_sort Abu-Hashem, Ameen Ali
collection PubMed
description This study aims to synthesize a new series of furochromone derivatives, evaluate their antimicrobial properties, and improve the permeability of potent compounds to inhibit different types of bacteria and fungi. Hence, Substituted furo[3,2-g]chromene-6-carbonitrile (3a,b) readily form 7-amino-5-methyl-furo [3,2-g]chromene-6-carbonitrile (4a,b) via reduction using sodium borohydride in methanol. The same compounds of (4a,b) were used as starting materials for the synthesis of new furochromone derivatives such as furochromeno [2,3-d]pyrimidines, N- (6-cyano- 5-methyl-furochromene) acetamide, N-(6-cyano-5-methyl-furo chromene)-2-phenyl acetamide, N- (6-cyano-5-methyl-furochromene) formimidate, furochromeno[1,2,4]triazepin-5-amine, furochrom ene-6-carboxamide, furochromeno[1,2,4]triazolopyrimidines, and furochromeno[2,3-b]quinolin- 6-amine. The structures of the new compounds were determined using spectroscopy: Nuclear Magnetic Resonance ((1)H, (13)C), Mass spectra, Infrared, and elemental analysis. Molecular docking studies were conducted to investigate the binding patterns of the prepared compounds against DNA-gyrase (PDB 1HNJ). The results displayed that compounds furochromenotriazolopyrimidine (20a,b), furochromenoquinolin-6-amine (21a,b), furochromenotriazepin-amine (9a,b), and furo- chromenopyrimidine-amine (19a,b) were excellent antimicrobials.
format Online
Article
Text
id pubmed-9611066
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-96110662022-10-28 The Synthesis, Antimicrobial Activity, and Molecular Docking of New 1, 2, 4-Triazole, 1, 2, 4-Triazepine, Quinoline, and Pyrimidine Scaffolds Condensed to Naturally Occurring Furochromones Abu-Hashem, Ameen Ali Al-Hussain, Sami A. Pharmaceuticals (Basel) Article This study aims to synthesize a new series of furochromone derivatives, evaluate their antimicrobial properties, and improve the permeability of potent compounds to inhibit different types of bacteria and fungi. Hence, Substituted furo[3,2-g]chromene-6-carbonitrile (3a,b) readily form 7-amino-5-methyl-furo [3,2-g]chromene-6-carbonitrile (4a,b) via reduction using sodium borohydride in methanol. The same compounds of (4a,b) were used as starting materials for the synthesis of new furochromone derivatives such as furochromeno [2,3-d]pyrimidines, N- (6-cyano- 5-methyl-furochromene) acetamide, N-(6-cyano-5-methyl-furo chromene)-2-phenyl acetamide, N- (6-cyano-5-methyl-furochromene) formimidate, furochromeno[1,2,4]triazepin-5-amine, furochrom ene-6-carboxamide, furochromeno[1,2,4]triazolopyrimidines, and furochromeno[2,3-b]quinolin- 6-amine. The structures of the new compounds were determined using spectroscopy: Nuclear Magnetic Resonance ((1)H, (13)C), Mass spectra, Infrared, and elemental analysis. Molecular docking studies were conducted to investigate the binding patterns of the prepared compounds against DNA-gyrase (PDB 1HNJ). The results displayed that compounds furochromenotriazolopyrimidine (20a,b), furochromenoquinolin-6-amine (21a,b), furochromenotriazepin-amine (9a,b), and furo- chromenopyrimidine-amine (19a,b) were excellent antimicrobials. MDPI 2022-10-07 /pmc/articles/PMC9611066/ /pubmed/36297343 http://dx.doi.org/10.3390/ph15101232 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Abu-Hashem, Ameen Ali
Al-Hussain, Sami A.
The Synthesis, Antimicrobial Activity, and Molecular Docking of New 1, 2, 4-Triazole, 1, 2, 4-Triazepine, Quinoline, and Pyrimidine Scaffolds Condensed to Naturally Occurring Furochromones
title The Synthesis, Antimicrobial Activity, and Molecular Docking of New 1, 2, 4-Triazole, 1, 2, 4-Triazepine, Quinoline, and Pyrimidine Scaffolds Condensed to Naturally Occurring Furochromones
title_full The Synthesis, Antimicrobial Activity, and Molecular Docking of New 1, 2, 4-Triazole, 1, 2, 4-Triazepine, Quinoline, and Pyrimidine Scaffolds Condensed to Naturally Occurring Furochromones
title_fullStr The Synthesis, Antimicrobial Activity, and Molecular Docking of New 1, 2, 4-Triazole, 1, 2, 4-Triazepine, Quinoline, and Pyrimidine Scaffolds Condensed to Naturally Occurring Furochromones
title_full_unstemmed The Synthesis, Antimicrobial Activity, and Molecular Docking of New 1, 2, 4-Triazole, 1, 2, 4-Triazepine, Quinoline, and Pyrimidine Scaffolds Condensed to Naturally Occurring Furochromones
title_short The Synthesis, Antimicrobial Activity, and Molecular Docking of New 1, 2, 4-Triazole, 1, 2, 4-Triazepine, Quinoline, and Pyrimidine Scaffolds Condensed to Naturally Occurring Furochromones
title_sort synthesis, antimicrobial activity, and molecular docking of new 1, 2, 4-triazole, 1, 2, 4-triazepine, quinoline, and pyrimidine scaffolds condensed to naturally occurring furochromones
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9611066/
https://www.ncbi.nlm.nih.gov/pubmed/36297343
http://dx.doi.org/10.3390/ph15101232
work_keys_str_mv AT abuhashemameenali thesynthesisantimicrobialactivityandmoleculardockingofnew124triazole124triazepinequinolineandpyrimidinescaffoldscondensedtonaturallyoccurringfurochromones
AT alhussainsamia thesynthesisantimicrobialactivityandmoleculardockingofnew124triazole124triazepinequinolineandpyrimidinescaffoldscondensedtonaturallyoccurringfurochromones
AT abuhashemameenali synthesisantimicrobialactivityandmoleculardockingofnew124triazole124triazepinequinolineandpyrimidinescaffoldscondensedtonaturallyoccurringfurochromones
AT alhussainsamia synthesisantimicrobialactivityandmoleculardockingofnew124triazole124triazepinequinolineandpyrimidinescaffoldscondensedtonaturallyoccurringfurochromones