Cargando…

On-Machine Measurement of Profile and Concentricity for Ultra-Precision Grinding of Hemispherical Shells

The profile and concentricity of hemispherical shells affect the frequency split and quality factor of hemispherical resonators. To compensate for machining errors caused by tool wear and tool setting, an on-machine measurement (OMM) method for the profile and concentricity of hemispherical shells i...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yu, Guan, Chaoliang, Dai, Yifan, Xue, Shuai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9611106/
https://www.ncbi.nlm.nih.gov/pubmed/36296084
http://dx.doi.org/10.3390/mi13101731
Descripción
Sumario:The profile and concentricity of hemispherical shells affect the frequency split and quality factor of hemispherical resonators. To compensate for machining errors caused by tool wear and tool setting, an on-machine measurement (OMM) method for the profile and concentricity of hemispherical shells in ultra-precision grinding was developed without the removal of workpieces from the machine tool. The OMM utilizes an inductive lever probe to test the inner and outer surfaces of the shell. A standard sphere is utilized to calibrate the relative position of the inductive lever probe at the two different work positions. To enhance the test accuracy of the OMM, a zero-position trigger-sampling method for the inductive lever probe was developed. It was verified to achieve a stable repeatability accuracy of 0.04 μm when using the OMM to realize a single-point sampling. Hemispherical shells were tested using the proposed OMM method. The concentricity test’s accuracy was verified to achieve accuracy better than 1 μm using a coordinate measuring machine and a standard sphere. The accuracy was 0.26 μm for testing the profiles of the hemispherical shell. The proposed OMM system was integrated with an ultra-precision machine tool. It is hoped that this method can help realize the integration function of machining-measurement-compensation.