Cargando…

Narrow Linewidth Half-Open-Cavity Random Laser Assisted by a Three-Grating Ring Resonator for Strain Detection

A stabilized narrow-linewidth random fiber laser for strain detection, based on a three-grating ring (TGR) resonator and half-open-cavity structure, is proposed and investigated experimentally. The half-open-cavity structure proved to provide double optical gain of erbium-doped fiber, which was bene...

Descripción completa

Detalles Bibliográficos
Autores principales: Lv, Bing, Zhang, Wentao, Huang, Wenzhu, Li, Fang, Li, Yongqian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9611176/
https://www.ncbi.nlm.nih.gov/pubmed/36298233
http://dx.doi.org/10.3390/s22207882
Descripción
Sumario:A stabilized narrow-linewidth random fiber laser for strain detection, based on a three-grating ring (TGR) resonator and half-open-cavity structure, is proposed and investigated experimentally. The half-open-cavity structure proved to provide double optical gain of erbium-doped fiber, which was beneficial to increase the photon lifetime as well as further narrow the linewidth. Meanwhile, the stability and frequency noise of narrow lasing output was improved by suppressing the competition-induced undesired residual random lasing modes with the TGR resonator. The TGR resonator is composed of a double-cavity fiber Bragg grating Fabry–Perot (FBG-FP) interferometer, a section of single-mode fiber, and a circulator. The specially designed double-cavity FBG-FP interferometer embedded in the TGR resonator acted as the strain-sensing element and improved the resolution of the dynamic strain. A stable ultra-narrow linewidth of about 205 Hz was obtained. The frequency noise was reduced to about 2 Hz/√Hz. A high dynamic strain measuring resolution of 35 femto-strain (fε)/√Hz was achieved.