Cargando…

Highlighting the Microbial Contamination of the Dropper Tip and Cap of In-Use Eye Drops, the Associated Contributory Factors, and the Risk of Infection: A Past-30-Years Literature Review

The sterility of eye drop content is a primary concern from manufacturing until opening, as well as during handling by end users, while microbial contamination of the dropper tip and cap are often disregarded. The contamination of these sites during drug administration represents a risk of microbial...

Descripción completa

Detalles Bibliográficos
Autores principales: Iskandar, Katia, Marchin, Loïc, Kodjikian, Laurent, Rocher, Maxime, Roques, Christine
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9611205/
https://www.ncbi.nlm.nih.gov/pubmed/36297611
http://dx.doi.org/10.3390/pharmaceutics14102176
Descripción
Sumario:The sterility of eye drop content is a primary concern from manufacturing until opening, as well as during handling by end users, while microbial contamination of the dropper tip and cap are often disregarded. The contamination of these sites during drug administration represents a risk of microbial transmission and ocular infection. In this review, we aim to assess microbial contamination of the dropper tip and cap of in-use eye drops, the associated contributory factors, and the risk of infection. We conducted a literature search of the MEDLINE, PubMed, and Cochrane Central databases. A total of 31 out of 1503 studies were selected. All the studies conducted in different settings that documented microbiologically contaminated in-use eye drops were included. Our review showed that microbial contamination of the dropper tip and cap of in-use eye drops ranged from 7.7 to 100% of the total contaminated tested samples. Documented contributory factors were conflicting across the literature. Studies investigating the association between eye infection and microbial contamination of the dropper tip and cap were scarce. New technologies offer a promising potential for securing the long-term sterility of eye drop content, tips, and caps, which could benefit from more research and well-defined study protocols under real-life scenarios.