Cargando…
Identification of Metabolic Signature Associated with Idiopathic Inflammatory Myopathy Reveals Polyamine Pathway Alteration in Muscle Tissue
Idiopathic inflammatory myopathy (IIM) is hard to diagnose without a muscle biopsy. We aimed to identify a metabolite panel for IIM detection by metabolomics approach in serum samples and to explore the metabolomic signature in tissue samples from a mouse model. We obtained serum samples from IIM pa...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9611268/ https://www.ncbi.nlm.nih.gov/pubmed/36295908 http://dx.doi.org/10.3390/metabo12101004 |
_version_ | 1784819484103540736 |
---|---|
author | Kang, Jihyun Kim, Jeong Yeon Jung, Youjin Kim, Seon Uk Lee, Eun Young Cho, Joo-Youn |
author_facet | Kang, Jihyun Kim, Jeong Yeon Jung, Youjin Kim, Seon Uk Lee, Eun Young Cho, Joo-Youn |
author_sort | Kang, Jihyun |
collection | PubMed |
description | Idiopathic inflammatory myopathy (IIM) is hard to diagnose without a muscle biopsy. We aimed to identify a metabolite panel for IIM detection by metabolomics approach in serum samples and to explore the metabolomic signature in tissue samples from a mouse model. We obtained serum samples from IIM patients, ankylosing spondylitis (AS) patients, healthy volunteers and muscle tissue samples from IIM murine model. All samples were subjected to a targeted metabolomic approach with various statistical analyses on serum and tissue samples to identify metabolic alterations. Three machine learning methods, such as logistic regression (LR), support vector machine (SVM), and random forest (RF), were applied to build prediction models. A set of 7 predictive metabolites was calculated using backward stepwise selection, and the model was evaluated within 5-fold cross-validation by using three machine algorithms. The model produced an area under the receiver operating characteristic curve values of 0.955 (LR), 0.908 (RF) and 0.918 (SVM). A total of 68 metabolites were significantly changed in mouse tissue. Notably, the most influential pathways contributing to the inflammation of muscle were the polyamine pathway and the beta-alanine pathway. Our metabolomic approach offers the potential biomarkers of IIM and reveals pathologically relevant metabolic pathways that are associated with IIM. |
format | Online Article Text |
id | pubmed-9611268 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96112682022-10-28 Identification of Metabolic Signature Associated with Idiopathic Inflammatory Myopathy Reveals Polyamine Pathway Alteration in Muscle Tissue Kang, Jihyun Kim, Jeong Yeon Jung, Youjin Kim, Seon Uk Lee, Eun Young Cho, Joo-Youn Metabolites Article Idiopathic inflammatory myopathy (IIM) is hard to diagnose without a muscle biopsy. We aimed to identify a metabolite panel for IIM detection by metabolomics approach in serum samples and to explore the metabolomic signature in tissue samples from a mouse model. We obtained serum samples from IIM patients, ankylosing spondylitis (AS) patients, healthy volunteers and muscle tissue samples from IIM murine model. All samples were subjected to a targeted metabolomic approach with various statistical analyses on serum and tissue samples to identify metabolic alterations. Three machine learning methods, such as logistic regression (LR), support vector machine (SVM), and random forest (RF), were applied to build prediction models. A set of 7 predictive metabolites was calculated using backward stepwise selection, and the model was evaluated within 5-fold cross-validation by using three machine algorithms. The model produced an area under the receiver operating characteristic curve values of 0.955 (LR), 0.908 (RF) and 0.918 (SVM). A total of 68 metabolites were significantly changed in mouse tissue. Notably, the most influential pathways contributing to the inflammation of muscle were the polyamine pathway and the beta-alanine pathway. Our metabolomic approach offers the potential biomarkers of IIM and reveals pathologically relevant metabolic pathways that are associated with IIM. MDPI 2022-10-21 /pmc/articles/PMC9611268/ /pubmed/36295908 http://dx.doi.org/10.3390/metabo12101004 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kang, Jihyun Kim, Jeong Yeon Jung, Youjin Kim, Seon Uk Lee, Eun Young Cho, Joo-Youn Identification of Metabolic Signature Associated with Idiopathic Inflammatory Myopathy Reveals Polyamine Pathway Alteration in Muscle Tissue |
title | Identification of Metabolic Signature Associated with Idiopathic Inflammatory Myopathy Reveals Polyamine Pathway Alteration in Muscle Tissue |
title_full | Identification of Metabolic Signature Associated with Idiopathic Inflammatory Myopathy Reveals Polyamine Pathway Alteration in Muscle Tissue |
title_fullStr | Identification of Metabolic Signature Associated with Idiopathic Inflammatory Myopathy Reveals Polyamine Pathway Alteration in Muscle Tissue |
title_full_unstemmed | Identification of Metabolic Signature Associated with Idiopathic Inflammatory Myopathy Reveals Polyamine Pathway Alteration in Muscle Tissue |
title_short | Identification of Metabolic Signature Associated with Idiopathic Inflammatory Myopathy Reveals Polyamine Pathway Alteration in Muscle Tissue |
title_sort | identification of metabolic signature associated with idiopathic inflammatory myopathy reveals polyamine pathway alteration in muscle tissue |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9611268/ https://www.ncbi.nlm.nih.gov/pubmed/36295908 http://dx.doi.org/10.3390/metabo12101004 |
work_keys_str_mv | AT kangjihyun identificationofmetabolicsignatureassociatedwithidiopathicinflammatorymyopathyrevealspolyaminepathwayalterationinmuscletissue AT kimjeongyeon identificationofmetabolicsignatureassociatedwithidiopathicinflammatorymyopathyrevealspolyaminepathwayalterationinmuscletissue AT jungyoujin identificationofmetabolicsignatureassociatedwithidiopathicinflammatorymyopathyrevealspolyaminepathwayalterationinmuscletissue AT kimseonuk identificationofmetabolicsignatureassociatedwithidiopathicinflammatorymyopathyrevealspolyaminepathwayalterationinmuscletissue AT leeeunyoung identificationofmetabolicsignatureassociatedwithidiopathicinflammatorymyopathyrevealspolyaminepathwayalterationinmuscletissue AT chojooyoun identificationofmetabolicsignatureassociatedwithidiopathicinflammatorymyopathyrevealspolyaminepathwayalterationinmuscletissue |