Cargando…
Effects of Lysophosphatidylcholine on Intestinal Health of Turbot Fed High-Lipid Diets
An 8-week feeding trial was conducted, where turbot were fed four experimental diets, containing different LPC levels (0%, 0.1%, 0.25%, and 0.5%, named LPC0, LPC0.1, LPC0.25, and LPC0.5, respectively). The intestinal morphology results showed that there were no widened lamina propria and mixed infla...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9611283/ https://www.ncbi.nlm.nih.gov/pubmed/36297082 http://dx.doi.org/10.3390/nu14204398 |
_version_ | 1784819487574327296 |
---|---|
author | Li, Sihui Luo, Xing Liao, Zhangbin Liang, Mengqing Xu, Houguo Mai, Kangsen Zhang, Yanjiao |
author_facet | Li, Sihui Luo, Xing Liao, Zhangbin Liang, Mengqing Xu, Houguo Mai, Kangsen Zhang, Yanjiao |
author_sort | Li, Sihui |
collection | PubMed |
description | An 8-week feeding trial was conducted, where turbot were fed four experimental diets, containing different LPC levels (0%, 0.1%, 0.25%, and 0.5%, named LPC0, LPC0.1, LPC0.25, and LPC0.5, respectively). The intestinal morphology results showed that there were no widened lamina propria and mixed inflammatory cells in the LPC-supplemented groups. Dietary LPC remarkably decreased the expression of TLRs (TLR3, TLR8, TLR9, and TLR22), MyD88, and signaling molecules (NF-κB, JNK, and AP-1). Similarly, diets with LPC supplementation markedly depressed the gene expression of NF-κB and JNK signaling pathway downstream genes (TNF-α, IL-1β, Bax, Caspase9, and Caspase-3). Furthermore, dietary LPC modified the intestinal microbial profiles, increasing the relative abundance of short-chain fatty acids-producers, lactic acid bacteria, and digestive enzyme-producing bacteria. Predictive functions of intestinal microbiota showed that turbot fed LPC diets had a relatively higher abundance of functions, such as lipid metabolism and immune system, but a lower abundance of functions, such as metabolic diseases and immune system diseases. The activities of intestinal acid phosphatase and alkaline phosphatase were also increased by dietary LPC. In conclusion, LPC supplementation could regulate the intestinal mucosal barrier via the TLR signaling pathway and alter the intestinal microbiota profile of turbot fed high-lipid diets. |
format | Online Article Text |
id | pubmed-9611283 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96112832022-10-28 Effects of Lysophosphatidylcholine on Intestinal Health of Turbot Fed High-Lipid Diets Li, Sihui Luo, Xing Liao, Zhangbin Liang, Mengqing Xu, Houguo Mai, Kangsen Zhang, Yanjiao Nutrients Article An 8-week feeding trial was conducted, where turbot were fed four experimental diets, containing different LPC levels (0%, 0.1%, 0.25%, and 0.5%, named LPC0, LPC0.1, LPC0.25, and LPC0.5, respectively). The intestinal morphology results showed that there were no widened lamina propria and mixed inflammatory cells in the LPC-supplemented groups. Dietary LPC remarkably decreased the expression of TLRs (TLR3, TLR8, TLR9, and TLR22), MyD88, and signaling molecules (NF-κB, JNK, and AP-1). Similarly, diets with LPC supplementation markedly depressed the gene expression of NF-κB and JNK signaling pathway downstream genes (TNF-α, IL-1β, Bax, Caspase9, and Caspase-3). Furthermore, dietary LPC modified the intestinal microbial profiles, increasing the relative abundance of short-chain fatty acids-producers, lactic acid bacteria, and digestive enzyme-producing bacteria. Predictive functions of intestinal microbiota showed that turbot fed LPC diets had a relatively higher abundance of functions, such as lipid metabolism and immune system, but a lower abundance of functions, such as metabolic diseases and immune system diseases. The activities of intestinal acid phosphatase and alkaline phosphatase were also increased by dietary LPC. In conclusion, LPC supplementation could regulate the intestinal mucosal barrier via the TLR signaling pathway and alter the intestinal microbiota profile of turbot fed high-lipid diets. MDPI 2022-10-20 /pmc/articles/PMC9611283/ /pubmed/36297082 http://dx.doi.org/10.3390/nu14204398 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Li, Sihui Luo, Xing Liao, Zhangbin Liang, Mengqing Xu, Houguo Mai, Kangsen Zhang, Yanjiao Effects of Lysophosphatidylcholine on Intestinal Health of Turbot Fed High-Lipid Diets |
title | Effects of Lysophosphatidylcholine on Intestinal Health of Turbot Fed High-Lipid Diets |
title_full | Effects of Lysophosphatidylcholine on Intestinal Health of Turbot Fed High-Lipid Diets |
title_fullStr | Effects of Lysophosphatidylcholine on Intestinal Health of Turbot Fed High-Lipid Diets |
title_full_unstemmed | Effects of Lysophosphatidylcholine on Intestinal Health of Turbot Fed High-Lipid Diets |
title_short | Effects of Lysophosphatidylcholine on Intestinal Health of Turbot Fed High-Lipid Diets |
title_sort | effects of lysophosphatidylcholine on intestinal health of turbot fed high-lipid diets |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9611283/ https://www.ncbi.nlm.nih.gov/pubmed/36297082 http://dx.doi.org/10.3390/nu14204398 |
work_keys_str_mv | AT lisihui effectsoflysophosphatidylcholineonintestinalhealthofturbotfedhighlipiddiets AT luoxing effectsoflysophosphatidylcholineonintestinalhealthofturbotfedhighlipiddiets AT liaozhangbin effectsoflysophosphatidylcholineonintestinalhealthofturbotfedhighlipiddiets AT liangmengqing effectsoflysophosphatidylcholineonintestinalhealthofturbotfedhighlipiddiets AT xuhouguo effectsoflysophosphatidylcholineonintestinalhealthofturbotfedhighlipiddiets AT maikangsen effectsoflysophosphatidylcholineonintestinalhealthofturbotfedhighlipiddiets AT zhangyanjiao effectsoflysophosphatidylcholineonintestinalhealthofturbotfedhighlipiddiets |