Cargando…
Moisture Content Prediction in Polymer Composites Using Machine Learning Techniques
The principal objective of this study is to employ non-destructive broadband dielectric spectroscopy/impedance spectroscopy and machine learning techniques to estimate the moisture content in FRP composites under hygrothermal aging. Here, classification and regression machine learning models that ca...
Autores principales: | Das, Partha Pratim, Rabby, Monjur Morshed, Vadlamudi, Vamsee, Raihan, Rassel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9611357/ https://www.ncbi.nlm.nih.gov/pubmed/36297980 http://dx.doi.org/10.3390/polym14204403 |
Ejemplares similares
-
Smart Self-Sensing Composite: Piezoelectric and Magnetostrictive FEA Modeling and Experimental Characterization Using Wireless Detection Systems
por: Qhobosheane, Relebohile George, et al.
Publicado: (2020) -
A Comparative Study of Thermal Aging Effect on the Properties of Silicone-Based and Silicone-Free Thermal Gap Filler Materials
por: Chowdhury, A S M Raufur, et al.
Publicado: (2021) -
RF-Based Moisture Content Determination in Rice Using Machine Learning Techniques
por: Azmi, Noraini, et al.
Publicado: (2021) -
Combining UAV-based hyperspectral imagery and machine learning algorithms for soil moisture content monitoring
por: Ge, Xiangyu, et al.
Publicado: (2019) -
Prediction of Tribological Properties of UHMWPE/SiC Polymer Composites Using Machine Learning Techniques
por: Mohammed, Abdul Jawad, et al.
Publicado: (2023)