Cargando…
Hybrid Bipedal Locomotion Based on Reinforcement Learning and Heuristics
Locomotion control has long been vital to legged robots. Agile locomotion can be implemented through either model-based controller or reinforcement learning. It is proven that robust controllers can be obtained through model-based methods and learning-based policies have advantages in generalization...
Autores principales: | Wang, Zhicheng, Wei, Wandi, Xie, Anhuan, Zhang, Yifeng, Wu, Jun, Zhu, Qiuguo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9611364/ https://www.ncbi.nlm.nih.gov/pubmed/36296041 http://dx.doi.org/10.3390/mi13101688 |
Ejemplares similares
-
Multimodal bipedal locomotion generation with passive dynamics via deep reinforcement learning
por: Koseki, Shunsuke, et al.
Publicado: (2023) -
Bipedal locomotion in zoo apes: Revisiting the hylobatian model for bipedal origins
por: Rosen, Kyle H., et al.
Publicado: (2022) -
Interdependence of balance mechanisms during bipedal locomotion
por: Fettrow, Tyler, et al.
Publicado: (2019) -
The functional importance of human foot muscles for bipedal locomotion
por: Farris, Dominic James, et al.
Publicado: (2019) -
Editorial: Assessing Bipedal Locomotion: Towards Replicable Benchmarks for Robotic and Robot-Assisted Locomotion
por: Torricelli, Diego, et al.
Publicado: (2019)