Cargando…
ST-DeepGait: A Spatiotemporal Deep Learning Model for Human Gait Recognition
Human gait analysis presents an opportunity to study complex spatiotemporal data transpiring as co-movement patterns of multiple moving objects (i.e., human joints). Such patterns are acknowledged as movement signatures specific to an individual, offering the possibility to identify each individual...
Autores principales: | Konz, Latisha, Hill, Andrew, Banaei-Kashani, Farnoush |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9611396/ https://www.ncbi.nlm.nih.gov/pubmed/36298427 http://dx.doi.org/10.3390/s22208075 |
Ejemplares similares
-
A Spatiotemporal Deep Learning Approach for Automatic Pathological Gait Classification
por: Albuquerque, Pedro, et al.
Publicado: (2021) -
Advances in Vision-Based Gait Recognition: From Handcrafted to Deep Learning
por: Mogan, Jashila Nair, et al.
Publicado: (2022) -
Human Gait Recognition: A Single Stream Optimal Deep Learning Features Fusion
por: Saleem, Faizan, et al.
Publicado: (2021) -
Person Recognition Based on Deep Gait: A Survey
por: Khaliluzzaman, Md., et al.
Publicado: (2023) -
KinectGaitNet: Kinect-Based Gait Recognition Using Deep Convolutional Neural Network
por: Bari, A. S. M. Hossain, et al.
Publicado: (2022)