Cargando…

Effects of Root Zone Aeration on Soil Microbes Species in a Peach Tree Rhizosphere and Root Growth

The oxygen content in the root zone considerably affects the growth and development of peach trees. However, few studies have been conducted on the effects of the oxygen content in the root zones of peach trees on soil microbes and root growth. Four-year-old Ruiguang 33/Prunus persica (L.) Batsch tr...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Maoxiang, Liu, Xiaolong, Shi, Kaiwu, Peng, Futian, Xiao, Yuansong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9611397/
https://www.ncbi.nlm.nih.gov/pubmed/36296156
http://dx.doi.org/10.3390/microorganisms10101879
Descripción
Sumario:The oxygen content in the root zone considerably affects the growth and development of peach trees. However, few studies have been conducted on the effects of the oxygen content in the root zones of peach trees on soil microbes and root growth. Four-year-old Ruiguang 33/Prunus persica (L.) Batsch trees were used to study the effects of root-zone aeration on soil microbes in a peach orchard, as well as on the soil nutrient contents, peach tree root systems, and plant potassium-to-nitrogen ratios. The results showed that the root-zone aeration substantially increased the soil oxygen content in the root zone and changed the soil microbial community structure. Compared with the control, the relative abundances of soil nitrogen-fixing microorganisms (Beta proteobacteria and Bradyrhizobium elkanii) and potassium-solubilizing microorganisms (Bacillus circulans) under the root-zone aeration conditions were greatly enhanced. Root-zone aeration increased the soil’s alkaline nitrogen content, available potassium content, and organic matter content, as well as the number and thickness of new white roots of peach trees, and root activity was increased significantly. At the same time, root-zone aeration changed the relative contents of total potassium and total nitrogen in the plants and considerably increased the potassium–nitrogen ratio in the shoots. The results indicate that aeration in the root zone can change the soil microbial community structure, increase the abundances of nitrogen-fixing and potassium-solubilizing microorganisms, and increase the plant potassium-to-nitrogen ratio, which are conducive to peach fruit quality.