Cargando…
Tracking Health, Performance and Recovery in Athletes Using Machine Learning
Training and competitive periods can temporarily impair the performance of an athlete. This disruption can be short- or long-term, lasting up to several days. We analyzed the health indicators of 3661 athletes during an in-depth medical examination. At the time of inclusion in the study, the athlete...
Autores principales: | Petrovsky, Denis V., Pustovoyt, Vasiliy I., Nikolsky, Kirill S., Malsagova, Kristina A., Kopylov, Arthur T., Stepanov, Alexander A., Rudnev, Vladimir. R., Balakin, Evgenii I., Kaysheva, Anna L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9611450/ https://www.ncbi.nlm.nih.gov/pubmed/36287773 http://dx.doi.org/10.3390/sports10100160 |
Ejemplares similares
-
Molecular Profiling of Athletes Performing High-Intensity Exercises in Extreme Environments
por: Malsagova, Kristina A., et al.
Publicado: (2023) -
PSSNet—An Accurate Super-Secondary Structure for Protein Segmentation
por: Petrovsky, Denis V., et al.
Publicado: (2022) -
Atomic Simulation of the Binding of JAK1 and JAK2 with the Selective Inhibitor Ruxolitinib
por: Kondratyev, Maxim, et al.
Publicado: (2022) -
In Silico Study of the Interactions of Anle138b Isomer, an Inhibitor of Amyloid Aggregation, with Partner Proteins
por: Kondratyev, Maxim S., et al.
Publicado: (2022) -
Current Approaches in Supersecondary Structures Investigation
por: Rudnev, Vladimir R., et al.
Publicado: (2021)