Cargando…
A Particleboard Surface Defect Detection Method Research Based on the Deep Learning Algorithm
Particleboard surface defects have a significant impact on product quality. A surface defect detection method is essential to enhancing the quality of particleboard because the conventional defect detection method has low accuracy and efficiency. This paper proposes a YOLO v5-Seg-Lab-4 (You Only Loo...
Autores principales: | Zhao, Ziyu, Ge, Zhedong, Jia, Mengying, Yang, Xiaoxia, Ding, Ruicheng, Zhou, Yucheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9611466/ https://www.ncbi.nlm.nih.gov/pubmed/36298082 http://dx.doi.org/10.3390/s22207733 |
Ejemplares similares
-
Real-time detection of particleboard surface defects based on improved YOLOV5 target detection
por: Zhao, Ziyu, et al.
Publicado: (2021) -
Deep Active Learning for Surface Defect Detection
por: Lv, Xiaoming, et al.
Publicado: (2020) -
A New Steel Defect Detection Algorithm Based on Deep Learning
por: Zhao, Weidong, et al.
Publicado: (2021) -
Feed Force and Sawdust Geometry in Particleboard Sawing
por: Pałubicki, Bartosz, et al.
Publicado: (2021) -
Cutting Forces in Peripheral Up-Milling of Particleboard
por: Pałubicki, Bartosz
Publicado: (2021)