Cargando…
Global Navigation Satellite System Real-Time Kinematic Positioning Framework for Precise Operation of a Swarm of Moving Vehicles
The global navigation satellite system (GNSS) real-time kinematic (RTK) technique is used to achieve relative positioning centimeter levels among multiple agents on the move. A typical GNSS RTK estimates the relative positions of multiple rover receivers with respect to a single-base receiver. In a...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9611497/ https://www.ncbi.nlm.nih.gov/pubmed/36298285 http://dx.doi.org/10.3390/s22207939 |
Sumario: | The global navigation satellite system (GNSS) real-time kinematic (RTK) technique is used to achieve relative positioning centimeter levels among multiple agents on the move. A typical GNSS RTK estimates the relative positions of multiple rover receivers with respect to a single-base receiver. In a fleet of rover GNSS receivers, this approach is inefficient because each rover receiver only uses GNSS measurements of its own and those sent from a single-base receiver. In this study, we propose a novel GNSS RTK framework that facilitates the precise positioning of a swarm of moving vehicles through the GNSS measurements of multiple receivers and broadcasts fixed-integer ambiguities of GNSS carrier phases. The proposed framework not only provides efficient RTK positioning but also reliable performance with a limited number of GNSS satellites in view. Our experimental flight tests with six GNSS receivers showed that the systematic procedure of the proposed framework could maintain lower than 6 cm of 3D RMS positioning errors, whereas the conventional RTK failed to resolve the correct integer ambiguities of double difference carrier phase measurements more than 13% in five out of nine total baselines. |
---|