Cargando…
Study on Detection and Recognition of Traffic Lights Based on Improved YOLOv4
To resolve the issues of a deep backbone network, a large model, slow reasoning speed on a mobile terminal, low detection accuracy for small targets and difficulties detecting and recognizing traffic lights in real time and accurately with YOLOv4, a traffic lights recognition method based on improve...
Autores principales: | Zhao, Ying, Feng, Yiyuan, Wang, Yueqiang, Zhang, Zhihan, Zhang, Zhihao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9611575/ https://www.ncbi.nlm.nih.gov/pubmed/36298138 http://dx.doi.org/10.3390/s22207787 |
Ejemplares similares
-
Traffic Lights Detection and Recognition Method Based on the Improved YOLOv4 Algorithm
por: Wang, Qingyan, et al.
Publicado: (2021) -
Traffic Sign Recognition Based on the YOLOv3 Algorithm
por: Gong, Chunpeng, et al.
Publicado: (2022) -
IDOD-YOLOV7: Image-Dehazing YOLOV7 for Object Detection in Low-Light Foggy Traffic Environments
por: Qiu, Yongsheng, et al.
Publicado: (2023) -
Multiscale Traffic Sign Detection Method in Complex Environment Based on YOLOv4
por: Wang, Yongjie, et al.
Publicado: (2022) -
An object detection algorithm combining self-attention and YOLOv4 in traffic scene
por: Lu, Kewei, et al.
Publicado: (2023)