Cargando…
End-to-End Deep Convolutional Recurrent Models for Noise Robust Waveform Speech Enhancement
Because of their simple design structure, end-to-end deep learning (E2E-DL) models have gained a lot of attention for speech enhancement. A number of DL models have achieved excellent results in eliminating the background noise and enhancing the quality as well as the intelligibility of noisy speech...
Autores principales: | Ullah, Rizwan, Wuttisittikulkij, Lunchakorn, Chaudhary, Sushank, Parnianifard, Amir, Shah, Shashi, Ibrar, Muhammad, Wahab, Fazal-E |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9611713/ https://www.ncbi.nlm.nih.gov/pubmed/36298131 http://dx.doi.org/10.3390/s22207782 |
Ejemplares similares
-
A data driven approach in less expensive robust transmitting coverage and power optimization
por: Parnianifard, Amir, et al.
Publicado: (2022) -
Author Correction: A data driven approach in less expensive robust transmitting coverage and power optimization
por: Parnianifard, Amir, et al.
Publicado: (2022) -
Speech Emotion Recognition Using Convolution Neural Networks and Multi-Head Convolutional Transformer
por: Ullah, Rizwan, et al.
Publicado: (2023) -
Robust optimal design of FOPID controller for five bar linkage robot in a Cyber-Physical System: A new simulation-optimization approach
por: Parnianifard, Amir, et al.
Publicado: (2020) -
Low-Complexity Beamforming Design for a Cooperative Reconfigurable Intelligent Surface-Aided Cell-Free Network
por: Siddiqi, Muhammad Zain, et al.
Publicado: (2023)