Cargando…
Semi-Supervised Defect Detection Method with Data-Expanding Strategy for PCB Quality Inspection
Printed circuit board (PCB) defect detection plays a crucial role in PCB production, and the popular methods are based on deep learning and require large-scale datasets with high-level ground-truth labels, in which it is time-consuming and costly to label these datasets. Semi-supervised learning (SS...
Autores principales: | Wan, Yusen, Gao, Liang, Li, Xinyu, Gao, Yiping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9611715/ https://www.ncbi.nlm.nih.gov/pubmed/36298322 http://dx.doi.org/10.3390/s22207971 |
Ejemplares similares
-
Defect Detection in Printed Circuit Boards Using Semi-Supervised Learning
por: Pham, Thi Tram Anh, et al.
Publicado: (2023) -
Cost-Sensitive Siamese Network for PCB Defect Classification
por: Miao, Yilin, et al.
Publicado: (2021) -
Conditional TransGAN-Based Data Augmentation for PCB Electronic Component Inspection
por: Wang, Chenglong, et al.
Publicado: (2023) -
A New Laser Ultrasonic Inspection Method for the Detection of Multiple Delamination Defects
por: Gao, Tianfang, et al.
Publicado: (2021) -
Analysis of Training Deep Learning Models for PCB Defect Detection
por: Park, Joon-Hyung, et al.
Publicado: (2023)