Cargando…
Lithium Accumulation in Salvinia natans Free-Floating Aquatic Plant
The new context of the intensive use of lithium-based batteries led to increased production of Li and Li-containing wastes. All these activities are potential sources of environmental pollution with Li. However, the negative impact of Li on ecosystems, its specific role in the plants’ development, u...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9611884/ https://www.ncbi.nlm.nih.gov/pubmed/36295307 http://dx.doi.org/10.3390/ma15207243 |
_version_ | 1784819637770256384 |
---|---|
author | Török, Anamaria Iulia Moldovan, Ana Kovacs, Eniko Cadar, Oana Becze, Anca Levei, Erika Andrea Neag, Emilia |
author_facet | Török, Anamaria Iulia Moldovan, Ana Kovacs, Eniko Cadar, Oana Becze, Anca Levei, Erika Andrea Neag, Emilia |
author_sort | Török, Anamaria Iulia |
collection | PubMed |
description | The new context of the intensive use of lithium-based batteries led to increased production of Li and Li-containing wastes. All these activities are potential sources of environmental pollution with Li. However, the negative impact of Li on ecosystems, its specific role in the plants’ development, uptake mechanism, and response to the induced stress are not fully understood. In this sense, the Li uptake and changes induced by Li exposure in the major and trace element contents, photosynthetic pigments, antioxidant activity, and elemental composition of Salvinia natans were also investigated. The results showed that Salvinia natans grown in Li-enriched nutrient solutions accumulated much higher Li contents than those grown in spring waters with a low Li content. However, the Li bioaccumulation factor in Salvinia natans grown in Li-enriched nutrient solutions was lower (13.3–29.5) than in spring waters (13.0–42.2). The plants exposed to high Li contents showed a decrease in their K and photosynthetic pigments content, while their total antioxidant activity did not change substantially. |
format | Online Article Text |
id | pubmed-9611884 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96118842022-10-28 Lithium Accumulation in Salvinia natans Free-Floating Aquatic Plant Török, Anamaria Iulia Moldovan, Ana Kovacs, Eniko Cadar, Oana Becze, Anca Levei, Erika Andrea Neag, Emilia Materials (Basel) Article The new context of the intensive use of lithium-based batteries led to increased production of Li and Li-containing wastes. All these activities are potential sources of environmental pollution with Li. However, the negative impact of Li on ecosystems, its specific role in the plants’ development, uptake mechanism, and response to the induced stress are not fully understood. In this sense, the Li uptake and changes induced by Li exposure in the major and trace element contents, photosynthetic pigments, antioxidant activity, and elemental composition of Salvinia natans were also investigated. The results showed that Salvinia natans grown in Li-enriched nutrient solutions accumulated much higher Li contents than those grown in spring waters with a low Li content. However, the Li bioaccumulation factor in Salvinia natans grown in Li-enriched nutrient solutions was lower (13.3–29.5) than in spring waters (13.0–42.2). The plants exposed to high Li contents showed a decrease in their K and photosynthetic pigments content, while their total antioxidant activity did not change substantially. MDPI 2022-10-17 /pmc/articles/PMC9611884/ /pubmed/36295307 http://dx.doi.org/10.3390/ma15207243 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Török, Anamaria Iulia Moldovan, Ana Kovacs, Eniko Cadar, Oana Becze, Anca Levei, Erika Andrea Neag, Emilia Lithium Accumulation in Salvinia natans Free-Floating Aquatic Plant |
title | Lithium Accumulation in Salvinia natans Free-Floating Aquatic Plant |
title_full | Lithium Accumulation in Salvinia natans Free-Floating Aquatic Plant |
title_fullStr | Lithium Accumulation in Salvinia natans Free-Floating Aquatic Plant |
title_full_unstemmed | Lithium Accumulation in Salvinia natans Free-Floating Aquatic Plant |
title_short | Lithium Accumulation in Salvinia natans Free-Floating Aquatic Plant |
title_sort | lithium accumulation in salvinia natans free-floating aquatic plant |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9611884/ https://www.ncbi.nlm.nih.gov/pubmed/36295307 http://dx.doi.org/10.3390/ma15207243 |
work_keys_str_mv | AT torokanamariaiulia lithiumaccumulationinsalvinianatansfreefloatingaquaticplant AT moldovanana lithiumaccumulationinsalvinianatansfreefloatingaquaticplant AT kovacseniko lithiumaccumulationinsalvinianatansfreefloatingaquaticplant AT cadaroana lithiumaccumulationinsalvinianatansfreefloatingaquaticplant AT beczeanca lithiumaccumulationinsalvinianatansfreefloatingaquaticplant AT leveierikaandrea lithiumaccumulationinsalvinianatansfreefloatingaquaticplant AT neagemilia lithiumaccumulationinsalvinianatansfreefloatingaquaticplant |