Cargando…
Seasonal Variations of Fine Root Dynamics in Rubber-Flemingia macrophylla Intercropping System in Southwestern China
Intercropping cover crops with trees enhance land productivity and improves the soil’s physio-chemical properties while reducing the negative environmental impact. However, there is a lack of quantitative information on the relationships between fine root biomass and available soil nutrients, e.g.,...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9611961/ https://www.ncbi.nlm.nih.gov/pubmed/36297706 http://dx.doi.org/10.3390/plants11202682 |
_version_ | 1784819657889284096 |
---|---|
author | Bibi, Farkhanda Balasubramanian, Durairaj Ilyas, Muhammad Sher, Jan Samoon, Hamz Ali Bin Khalid, Muhammad Hayder Alharby, Hesham F. Majrashi, Ali Alghamdi, Sameera A. Hakeem, Khalid Rehman Shah, Muddaser Rather, Shabir A. |
author_facet | Bibi, Farkhanda Balasubramanian, Durairaj Ilyas, Muhammad Sher, Jan Samoon, Hamz Ali Bin Khalid, Muhammad Hayder Alharby, Hesham F. Majrashi, Ali Alghamdi, Sameera A. Hakeem, Khalid Rehman Shah, Muddaser Rather, Shabir A. |
author_sort | Bibi, Farkhanda |
collection | PubMed |
description | Intercropping cover crops with trees enhance land productivity and improves the soil’s physio-chemical properties while reducing the negative environmental impact. However, there is a lack of quantitative information on the relationships between fine root biomass and available soil nutrients, e.g., nitrogen (N), phosphorus (P), and potassium (K), especially in the rubber-Flemingia macrophylla intercropping system. Therefore, this study was initiated to explore the seasonal variation in fine root biomass and available soil nutrients at different stand ages (12, 15, and 24 years) and management systems, i.e., rubber monoculture (mono) and rubber-Flemingia macrophylla intercropping. In this study, we sampled 900 soil cores over five seasonal intervals, representing one year of biomass. The results showed that the total fine root biomass was greater in 12-year-old rubber monoculture; the same trend was observed in soil nutrients P and K. Furthermore, total fine root biomass had a significant positive correlation with available N (p < 0.001) in rubber monoculture and intercropping systems. Thus, it suggests that fine root growth and accumulation is a function of available soil nutrients. Our results indicate that fine root biomass and soil nutrients (P and K) may be determined by the functional characteristics of dominant tree species rather than collective mixed-species intercropping and are closely linked to forest stand type, topographic and edaphic factors. However, further investigations are needed to understand interspecific and complementary interactions between intercrop species under the rubber-Flemingia macrophylla intercropping system. |
format | Online Article Text |
id | pubmed-9611961 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96119612022-10-28 Seasonal Variations of Fine Root Dynamics in Rubber-Flemingia macrophylla Intercropping System in Southwestern China Bibi, Farkhanda Balasubramanian, Durairaj Ilyas, Muhammad Sher, Jan Samoon, Hamz Ali Bin Khalid, Muhammad Hayder Alharby, Hesham F. Majrashi, Ali Alghamdi, Sameera A. Hakeem, Khalid Rehman Shah, Muddaser Rather, Shabir A. Plants (Basel) Article Intercropping cover crops with trees enhance land productivity and improves the soil’s physio-chemical properties while reducing the negative environmental impact. However, there is a lack of quantitative information on the relationships between fine root biomass and available soil nutrients, e.g., nitrogen (N), phosphorus (P), and potassium (K), especially in the rubber-Flemingia macrophylla intercropping system. Therefore, this study was initiated to explore the seasonal variation in fine root biomass and available soil nutrients at different stand ages (12, 15, and 24 years) and management systems, i.e., rubber monoculture (mono) and rubber-Flemingia macrophylla intercropping. In this study, we sampled 900 soil cores over five seasonal intervals, representing one year of biomass. The results showed that the total fine root biomass was greater in 12-year-old rubber monoculture; the same trend was observed in soil nutrients P and K. Furthermore, total fine root biomass had a significant positive correlation with available N (p < 0.001) in rubber monoculture and intercropping systems. Thus, it suggests that fine root growth and accumulation is a function of available soil nutrients. Our results indicate that fine root biomass and soil nutrients (P and K) may be determined by the functional characteristics of dominant tree species rather than collective mixed-species intercropping and are closely linked to forest stand type, topographic and edaphic factors. However, further investigations are needed to understand interspecific and complementary interactions between intercrop species under the rubber-Flemingia macrophylla intercropping system. MDPI 2022-10-12 /pmc/articles/PMC9611961/ /pubmed/36297706 http://dx.doi.org/10.3390/plants11202682 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Bibi, Farkhanda Balasubramanian, Durairaj Ilyas, Muhammad Sher, Jan Samoon, Hamz Ali Bin Khalid, Muhammad Hayder Alharby, Hesham F. Majrashi, Ali Alghamdi, Sameera A. Hakeem, Khalid Rehman Shah, Muddaser Rather, Shabir A. Seasonal Variations of Fine Root Dynamics in Rubber-Flemingia macrophylla Intercropping System in Southwestern China |
title | Seasonal Variations of Fine Root Dynamics in Rubber-Flemingia macrophylla Intercropping System in Southwestern China |
title_full | Seasonal Variations of Fine Root Dynamics in Rubber-Flemingia macrophylla Intercropping System in Southwestern China |
title_fullStr | Seasonal Variations of Fine Root Dynamics in Rubber-Flemingia macrophylla Intercropping System in Southwestern China |
title_full_unstemmed | Seasonal Variations of Fine Root Dynamics in Rubber-Flemingia macrophylla Intercropping System in Southwestern China |
title_short | Seasonal Variations of Fine Root Dynamics in Rubber-Flemingia macrophylla Intercropping System in Southwestern China |
title_sort | seasonal variations of fine root dynamics in rubber-flemingia macrophylla intercropping system in southwestern china |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9611961/ https://www.ncbi.nlm.nih.gov/pubmed/36297706 http://dx.doi.org/10.3390/plants11202682 |
work_keys_str_mv | AT bibifarkhanda seasonalvariationsoffinerootdynamicsinrubberflemingiamacrophyllaintercroppingsysteminsouthwesternchina AT balasubramaniandurairaj seasonalvariationsoffinerootdynamicsinrubberflemingiamacrophyllaintercroppingsysteminsouthwesternchina AT ilyasmuhammad seasonalvariationsoffinerootdynamicsinrubberflemingiamacrophyllaintercroppingsysteminsouthwesternchina AT sherjan seasonalvariationsoffinerootdynamicsinrubberflemingiamacrophyllaintercroppingsysteminsouthwesternchina AT samoonhamzali seasonalvariationsoffinerootdynamicsinrubberflemingiamacrophyllaintercroppingsysteminsouthwesternchina AT binkhalidmuhammadhayder seasonalvariationsoffinerootdynamicsinrubberflemingiamacrophyllaintercroppingsysteminsouthwesternchina AT alharbyheshamf seasonalvariationsoffinerootdynamicsinrubberflemingiamacrophyllaintercroppingsysteminsouthwesternchina AT majrashiali seasonalvariationsoffinerootdynamicsinrubberflemingiamacrophyllaintercroppingsysteminsouthwesternchina AT alghamdisameeraa seasonalvariationsoffinerootdynamicsinrubberflemingiamacrophyllaintercroppingsysteminsouthwesternchina AT hakeemkhalidrehman seasonalvariationsoffinerootdynamicsinrubberflemingiamacrophyllaintercroppingsysteminsouthwesternchina AT shahmuddaser seasonalvariationsoffinerootdynamicsinrubberflemingiamacrophyllaintercroppingsysteminsouthwesternchina AT rathershabira seasonalvariationsoffinerootdynamicsinrubberflemingiamacrophyllaintercroppingsysteminsouthwesternchina |