Cargando…
Flexible Threshold-Type Switching Devices with Low Threshold and High Stability Based on Silkworm Hemolymph
In this paper, a floating-gate flexible nonvolatile memory is reported that is composed of natural biological materials, namely, silkworm hemolymph, graphene quantum dots as the floating-gate layer, and polymethyl methacrylate (PMMA) as the insulating layer. The device has a high ON/OFF current rati...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9611976/ https://www.ncbi.nlm.nih.gov/pubmed/36296899 http://dx.doi.org/10.3390/nano12203709 |
Sumario: | In this paper, a floating-gate flexible nonvolatile memory is reported that is composed of natural biological materials, namely, silkworm hemolymph, graphene quantum dots as the floating-gate layer, and polymethyl methacrylate (PMMA) as the insulating layer. The device has a high ON/OFF current ratio (4.76 × 10(6)), a low setting voltage (<−1.75 V), and good durability and retention ability. The device has two storage characteristics, namely, Flash and WORM, which can be effectively and accurately controlled by adjusting the limiting current during device setting. The resistance switching characteristics are the result of the formation and fracture of conductive filaments. The floating-gate flexible bioresistive random access memory prepared in this paper provides a new idea for the development of multifunctional and biocompatible flexible memory. |
---|