Cargando…

Antimicrobial Peptides Can Generate Tolerance by Lag and Interfere with Antimicrobial Therapy

Antimicrobial peptides (AMPs) are widely distributed molecules secreted mostly by cells of the innate immune system to prevent bacterial proliferation at the site of infection. As with classic antibiotics, continued treatment with AMPs can create resistance in bacteria. However, whether AMPs can gen...

Descripción completa

Detalles Bibliográficos
Autores principales: Sandín, Daniel, Valle, Javier, Morata, Jordi, Andreu, David, Torrent, Marc
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9611985/
https://www.ncbi.nlm.nih.gov/pubmed/36297604
http://dx.doi.org/10.3390/pharmaceutics14102169
Descripción
Sumario:Antimicrobial peptides (AMPs) are widely distributed molecules secreted mostly by cells of the innate immune system to prevent bacterial proliferation at the site of infection. As with classic antibiotics, continued treatment with AMPs can create resistance in bacteria. However, whether AMPs can generate tolerance as an intermediate stage towards resistance is not known. Here, we show that the treatment of Escherichia coli with different AMPs induces tolerance by lag, particularly for those peptides that have internal targets. This tolerance can be detected as different morphological and physiological changes, which depend on the type of peptide molecule the bacterium has been exposed to. In addition, we show that AMP tolerance can also affect antibiotic treatment. The genomic sequencing of AMP-tolerant strains shows that different mutations alter membrane composition, DNA replication, and translation. Some of these mutations have also been observed in antibiotic-resistant strains, suggesting that AMP tolerance could be a relevant step in the development of antibiotic resistance. Monitoring AMP tolerance is relevant vis-á-vis the eventual therapeutic use of AMPs and because cross-tolerance might favor the emergence of resistance against conventional antibiotic treatments.