Cargando…

Effect of Primary Packaging Material on the Stability Characteristics of Diazepam and Midazolam Parenteral Formulations

Diazepam and midazolam are formulated in autoinjectors for parenteral administration to decrease seizures in the case of emergency. However, the compatibility of these lipophilic drugs with the primary packaging material is a key part of drug formulation development. In this work, diazepam and midaz...

Descripción completa

Detalles Bibliográficos
Autores principales: Rodríguez Fernández, María José, Serrano Lopez, Dolores Remedios, Torrado, Juan José
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9611996/
https://www.ncbi.nlm.nih.gov/pubmed/36297493
http://dx.doi.org/10.3390/pharmaceutics14102061
Descripción
Sumario:Diazepam and midazolam are formulated in autoinjectors for parenteral administration to decrease seizures in the case of emergency. However, the compatibility of these lipophilic drugs with the primary packaging material is a key part of drug formulation development. In this work, diazepam and midazolam were packaged in glass syringes as parenteral solutions using two different elastomeric sealing materials (PH 701/50 C BLACK and 4023/50 GRAY). Syringes were stored at three different storage temperatures: 4, 25, and 40 °C. At different time points over 3 years, physical appearance, benzodiazepine sorption on the sealing elastomeric materials, and drug content in solution were assayed. A detailed study on the adsorption profile of both benzodiazepines on the elastomeric gaskets was performed, indicating that the novel rubber material made of bromobutyl derivatives (4023/50 GRAY) is a better choice for manufacturing autoinjectors due to lower drug adsorption. Diazepam showed a better stability profile than midazolam, with the latter solubilised as a hydrochloride salt in an acidic pH that can affect the integrity of the elastomer over time. The amount of drug adsorbed on the surface of the elastomer was measured by NIR and correlated using chemometric models with the amount retained in the elastomeric gaskets quantified by HPLC.