Cargando…
Transfer Learning for Modeling Plasmonic Nanowire Waveguides
Retrieving waveguiding properties of plasmonic metal nanowires (MNWs) through numerical simulations is time- and computational-resource-consuming, especially for those with abrupt geometric features and broken symmetries. Deep learning provides an alternative approach but is challenging to use due t...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9612048/ https://www.ncbi.nlm.nih.gov/pubmed/36296814 http://dx.doi.org/10.3390/nano12203624 |