Cargando…
Transfer Learning for Modeling Plasmonic Nanowire Waveguides
Retrieving waveguiding properties of plasmonic metal nanowires (MNWs) through numerical simulations is time- and computational-resource-consuming, especially for those with abrupt geometric features and broken symmetries. Deep learning provides an alternative approach but is challenging to use due t...
Autores principales: | Luo, Aoning, Feng, Yuanjia, Zhu, Chunyan, Wang, Yipei, Wu, Xiaoqin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9612048/ https://www.ncbi.nlm.nih.gov/pubmed/36296814 http://dx.doi.org/10.3390/nano12203624 |
Ejemplares similares
-
Ultra-confined Propagating Exciton–Plasmon Polaritons Enabled by Cavity-Free Strong Coupling: Beating Plasmonic Trade-Offs
por: Wang, Yipei, et al.
Publicado: (2022) -
Plasmonic Waveguide-Integrated Nanowire Laser
por: Bermúdez-Ureña, Esteban, et al.
Publicado: (2017) -
Hybrid Nanowire–Rectangular Plasmonic Waveguide for Subwavelength Confinement at 1550 Nm
por: Wang, Yindi, et al.
Publicado: (2022) -
Photon hopping and nanowire based hybrid plasmonic waveguide and ring-resonator
por: Gu, Zhiyuan, et al.
Publicado: (2015) -
Influence of symmetry breaking degrees on surface plasmon polaritons propagation in branched silver nanowire waveguides
por: Hua, Jiaojiao, et al.
Publicado: (2016)