Cargando…
Direct Hydroxylation of Benzene with Hydrogen Peroxide Using Fe Complexes Encapsulated into Mesoporous Y-Type Zeolite
Mesoporous Y-type zeolite (MYZ) was prepared by an acid and base treatment of commercial Y-type zeolite (YZ). The mesopore volume of MYZ was six times higher than that of YZ. [Fe(terpy)(2)](2+) complexes encapsulated into MYZ and YZ with different Fe contents (Fe(X)L-MYZ and Fe(X)L-YZ; X is the amou...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9612136/ https://www.ncbi.nlm.nih.gov/pubmed/36296443 http://dx.doi.org/10.3390/molecules27206852 |
Sumario: | Mesoporous Y-type zeolite (MYZ) was prepared by an acid and base treatment of commercial Y-type zeolite (YZ). The mesopore volume of MYZ was six times higher than that of YZ. [Fe(terpy)(2)](2+) complexes encapsulated into MYZ and YZ with different Fe contents (Fe(X)L-MYZ and Fe(X)L-YZ; X is the amount of Fe) were prepared and characterized. The oxidation of benzene with H(2)O(2) using Fe(X)L-MYZ and Fe(X)L-YZ catalysts was carried out; phenol was selectively produced with all Fe-containing zeolite catalysts. As a result, the oxidation activity of benzene increased with increasing iron complex content in the Fe(X)L-MYZ and Fe(X)L-YZ catalysts. The oxidation activity of benzene using Fe(X)L-MYZ catalyst was higher than that using Fe(X)L-YZ. Furthermore, adding mesopores increased the catalytic activity of the iron complex as the iron complex content increased. |
---|