Cargando…
A Multi-Purpose Shallow Convolutional Neural Network for Chart Images
Charts are often used for the graphical representation of tabular data. Due to their vast expansion in various fields, it is necessary to develop computer algorithms that can easily retrieve and process information from chart images in a helpful way. Convolutional neural networks (CNNs) have succeed...
Autores principales: | Bajić, Filip, Orel, Ognjen, Habijan, Marija |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9612160/ https://www.ncbi.nlm.nih.gov/pubmed/36298046 http://dx.doi.org/10.3390/s22207695 |
Ejemplares similares
-
A shallow convolutional neural network for blind image sharpness
assessment
por: Yu, Shaode, et al.
Publicado: (2017) -
A Shallow Convolutional Neural Network Predicts Prognosis of Lung Cancer Patients in Multi-Institutional CT-Image Data
por: Mukherjee, Pritam, et al.
Publicado: (2020) -
Breast cancer detection: Shallow convolutional neural network against deep convolutional neural networks based approach
por: Das, Himanish Shekhar, et al.
Publicado: (2023) -
Charting Nanocluster
Structures via Convolutional
Neural Networks
por: Telari, Emanuele, et al.
Publicado: (2023) -
Impact of chart image characteristics on stock price prediction with a convolutional neural network
por: Jin, Guangxun, et al.
Publicado: (2021)