Cargando…
Multi-Center Evaluation of Gel-Based and Dry Multipin EEG Caps
Dry electrodes for electroencephalography (EEG) allow new fields of application, including telemedicine, mobile EEG, emergency EEG, and long-term repetitive measurements for research, neurofeedback, or brain–computer interfaces. Different dry electrode technologies have been proposed and validated i...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9612204/ https://www.ncbi.nlm.nih.gov/pubmed/36298430 http://dx.doi.org/10.3390/s22208079 |
_version_ | 1784819716298113024 |
---|---|
author | Ng, Chuen Rue Fiedler, Patrique Kuhlmann, Levin Liley, David Vasconcelos, Beatriz Fonseca, Carlos Tamburro, Gabriella Comani, Silvia Lui, Troby Ka-Yan Tse, Chun-Yu Warsito, Indhika Fauzhan Supriyanto, Eko Haueisen, Jens |
author_facet | Ng, Chuen Rue Fiedler, Patrique Kuhlmann, Levin Liley, David Vasconcelos, Beatriz Fonseca, Carlos Tamburro, Gabriella Comani, Silvia Lui, Troby Ka-Yan Tse, Chun-Yu Warsito, Indhika Fauzhan Supriyanto, Eko Haueisen, Jens |
author_sort | Ng, Chuen Rue |
collection | PubMed |
description | Dry electrodes for electroencephalography (EEG) allow new fields of application, including telemedicine, mobile EEG, emergency EEG, and long-term repetitive measurements for research, neurofeedback, or brain–computer interfaces. Different dry electrode technologies have been proposed and validated in comparison to conventional gel-based electrodes. Most previous studies have been performed at a single center and by single operators. We conducted a multi-center and multi-operator study validating multipin dry electrodes to study the reproducibility and generalizability of their performance in different environments and for different operators. Moreover, we aimed to study the interrelation of operator experience, preparation time, and wearing comfort on the EEG signal quality. EEG acquisitions using dry and gel-based EEG caps were carried out in 6 different countries with 115 volunteers, recording electrode-skin impedances, resting state EEG and evoked activity. The dry cap showed average channel reliability of 81% but higher average impedances than the gel-based cap. However, the dry EEG caps required 62% less preparation time. No statistical differences were observed between the gel-based and dry EEG signal characteristics in all signal metrics. We conclude that the performance of the dry multipin electrodes is highly reproducible, whereas the primary influences on channel reliability and signal quality are operator skill and experience. |
format | Online Article Text |
id | pubmed-9612204 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96122042022-10-28 Multi-Center Evaluation of Gel-Based and Dry Multipin EEG Caps Ng, Chuen Rue Fiedler, Patrique Kuhlmann, Levin Liley, David Vasconcelos, Beatriz Fonseca, Carlos Tamburro, Gabriella Comani, Silvia Lui, Troby Ka-Yan Tse, Chun-Yu Warsito, Indhika Fauzhan Supriyanto, Eko Haueisen, Jens Sensors (Basel) Article Dry electrodes for electroencephalography (EEG) allow new fields of application, including telemedicine, mobile EEG, emergency EEG, and long-term repetitive measurements for research, neurofeedback, or brain–computer interfaces. Different dry electrode technologies have been proposed and validated in comparison to conventional gel-based electrodes. Most previous studies have been performed at a single center and by single operators. We conducted a multi-center and multi-operator study validating multipin dry electrodes to study the reproducibility and generalizability of their performance in different environments and for different operators. Moreover, we aimed to study the interrelation of operator experience, preparation time, and wearing comfort on the EEG signal quality. EEG acquisitions using dry and gel-based EEG caps were carried out in 6 different countries with 115 volunteers, recording electrode-skin impedances, resting state EEG and evoked activity. The dry cap showed average channel reliability of 81% but higher average impedances than the gel-based cap. However, the dry EEG caps required 62% less preparation time. No statistical differences were observed between the gel-based and dry EEG signal characteristics in all signal metrics. We conclude that the performance of the dry multipin electrodes is highly reproducible, whereas the primary influences on channel reliability and signal quality are operator skill and experience. MDPI 2022-10-21 /pmc/articles/PMC9612204/ /pubmed/36298430 http://dx.doi.org/10.3390/s22208079 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ng, Chuen Rue Fiedler, Patrique Kuhlmann, Levin Liley, David Vasconcelos, Beatriz Fonseca, Carlos Tamburro, Gabriella Comani, Silvia Lui, Troby Ka-Yan Tse, Chun-Yu Warsito, Indhika Fauzhan Supriyanto, Eko Haueisen, Jens Multi-Center Evaluation of Gel-Based and Dry Multipin EEG Caps |
title | Multi-Center Evaluation of Gel-Based and Dry Multipin EEG Caps |
title_full | Multi-Center Evaluation of Gel-Based and Dry Multipin EEG Caps |
title_fullStr | Multi-Center Evaluation of Gel-Based and Dry Multipin EEG Caps |
title_full_unstemmed | Multi-Center Evaluation of Gel-Based and Dry Multipin EEG Caps |
title_short | Multi-Center Evaluation of Gel-Based and Dry Multipin EEG Caps |
title_sort | multi-center evaluation of gel-based and dry multipin eeg caps |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9612204/ https://www.ncbi.nlm.nih.gov/pubmed/36298430 http://dx.doi.org/10.3390/s22208079 |
work_keys_str_mv | AT ngchuenrue multicenterevaluationofgelbasedanddrymultipineegcaps AT fiedlerpatrique multicenterevaluationofgelbasedanddrymultipineegcaps AT kuhlmannlevin multicenterevaluationofgelbasedanddrymultipineegcaps AT lileydavid multicenterevaluationofgelbasedanddrymultipineegcaps AT vasconcelosbeatriz multicenterevaluationofgelbasedanddrymultipineegcaps AT fonsecacarlos multicenterevaluationofgelbasedanddrymultipineegcaps AT tamburrogabriella multicenterevaluationofgelbasedanddrymultipineegcaps AT comanisilvia multicenterevaluationofgelbasedanddrymultipineegcaps AT luitrobykayan multicenterevaluationofgelbasedanddrymultipineegcaps AT tsechunyu multicenterevaluationofgelbasedanddrymultipineegcaps AT warsitoindhikafauzhan multicenterevaluationofgelbasedanddrymultipineegcaps AT supriyantoeko multicenterevaluationofgelbasedanddrymultipineegcaps AT haueisenjens multicenterevaluationofgelbasedanddrymultipineegcaps |